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Dedicated to the memory of Bill Thurston

Geometric Structures



© Geometry through symmetry (Lie, Klein)
© Projective geometries: deforming 2-dimensional hyperbolic geometry

© C(lassification: Moduli spaces of geometric structures ®(G7X)(Z)
associated to topology ¥ and homogeneous space (G, X = G/H)

© Examples: Euclidean, hyperbolic geometry

© Examples: Real, complex projective geometry

© Examples: Minkowski space, Anti-de Sitter space

@ Moduli of surface group representations (higher Teichmiiller theory)
© C(lassification of complete affine 3-manifolds

© Margulis spacetimes, crooked geometry
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Geometry through symmetry

@ In his 1872 Erlangen Program, Felix Klein proposed that a geometry
is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X.
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o Affine geometry: X = R" and G its group of affine transformations
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Geometry through symmetry

@ In his 1872 Erlangen Program, Felix Klein proposed that a geometry
is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X.

o Euclidean geometry: X = R" and G its group of isometries.

@ Preserves distance, angle, area, straight lines, parallelism..

o Affine geometry: X = R" and G its group of affine transformations
x — Ax + b.

@ Preserves parallelism, geodesics (curves of zero acceleration).
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Geometry through symmetry

@ In his 1872 Erlangen Program, Felix Klein proposed that a geometry
is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X.

o Euclidean geometry: X = R" and G its group of isometries.

@ Preserves distance, angle, area, straight lines, parallelism..

o Affine geometry: X = R" and G its group of affine transformations

x — Ax + b.
@ Preserves parallelism, geodesics (curves of zero acceleration).
@ When the linear part L(y) = A is orthogonal, then v is an isometry.
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Geometry through symmetry

@ In his 1872 Erlangen Program, Felix Klein proposed that a geometry
is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X.

o Euclidean geometry: X = R" and G its group of isometries.

@ Preserves distance, angle, area, straight lines, parallelism..

o Affine geometry: X = R" and G its group of affine transformations

x —L5 Ax + b.

@ Preserves parallelism, geodesics (curves of zero acceleration).
@ When the linear part L(y) = A is orthogonal, then v is an isometry.

@ Projective geometry: X = RP" and G its group of collineations.
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Geometry through symmetry

@ In his 1872 Erlangen Program, Felix Klein proposed that a geometry
is the study of properties of an abstract space X which are invariant
under a transitive group G of transformations of X.

o Euclidean geometry: X = R" and G its group of isometries.

@ Preserves distance, angle, area, straight lines, parallelism..

o Affine geometry: X = R" and G its group of affine transformations

x —L5 Ax + b.

@ Preserves parallelism, geodesics (curves of zero acceleration).
@ When the linear part L(y) = A is orthogonal, then v is an isometry.

@ Projective geometry: X = RP" and G its group of collineations.
o Preserves (unparametrized) straight lines, incidence...
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Deformation spaces of geometric structures
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.
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@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space...
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space...

@ and can be locally modeled on Euclidean space.
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space...

@ and can be locally modeled on Euclidean space.

@ How to classify these structures, given a fixed topology and geometry
(homogeneous space)?
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@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.

@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space...

@ and can be locally modeled on Euclidean space.

@ How to classify these structures, given a fixed topology and geometry
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o ldeally would like a space whose points classify these geometries...
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.
@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space...
@ and can be locally modeled on Euclidean space.
@ How to classify these structures, given a fixed topology and geometry
(homogeneous space)?

o ldeally would like a space whose points classify these geometries...
@ Whatever can go wrong in defining such a space will go wrong, for
certain choices of X and (G, X).
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.
@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space...
@ and can be locally modeled on Euclidean space.
@ How to classify these structures, given a fixed topology and geometry
(homogeneous space)?

o ldeally would like a space whose points classify these geometries...

@ Whatever can go wrong in defining such a space will go wrong, for
certain choices of X and (G, X).

@ Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...
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Deformation spaces of geometric structures

@ Ehresmann structure on a manifold: a geometric structure defined by
an atlas of local coordinate charts into a fixed homogeneous space.
@ For example, every flat Riemannian manifold is locally isometric to
Euclidean space...
@ and can be locally modeled on Euclidean space.
@ How to classify these structures, given a fixed topology and geometry
(homogeneous space)?
o ldeally would like a space whose points classify these geometries...
@ Whatever can go wrong in defining such a space will go wrong, for
certain choices of X and (G, X).
@ Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...
@ and then by discrete groups which don't act properly.
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Putting geometric structure on a topological space
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
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Putting geometric structure on a topological space
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 225 $a(Ua) € X
o On components of U, N U, 3g € G such that

g0¢a:¢ﬁ-
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 225 $a(Ua) € X
o On components of U, N U, 3g € G such that
go wa = wB-

o Local (G, X)-geometry independent of patch.
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 225 $a(Ua) € X
o On components of U, N U, 3g € G such that
go wa = wB-

o Local (G, X)-geometry independent of patch.
@ (Ehresmann 1936): Geometric manifold M modeled on X.
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Geometrization in 2 and 3 dimensions
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:

0 Geometric Structures = /35



Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
o Spherical geometry (if x(X) > 0);
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
o Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
o Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).

@ Equivalently, Riemannian metrics of constant curvature +1, 0, —1.
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
o Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).
@ Equivalently, Riemannian metrics of constant curvature +1, 0, —1.
@ Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
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Geometrization in 2 and 3 dimensions

@ Dimension 2: every surface has exactly one of:
o Spherical geometry (if x(X) > 0);
o Euclidean geometry (if x(X) = 0);
@ Hyperbolic geometry (if x(X) < 0).

Equivalently, Riemannian metrics of constant curvature +1, 0, —1.

@ Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
@ (Thurston 1976): 3-manifolds canonically decompose into locally

homogeneous Riemannian pieces (8 types). (proved by Perelman)
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Classification of geometric structures
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Classification of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).
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Classification of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).

@ Example: The 2-sphere admits no Euclidean structure:
A metrically accurate world atlas.
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Classification of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).

@ Example: The 2-sphere admits no Euclidean structure:
A metrically accurate world atlas.
o Example: The 2-torus admits a moduli space of Euclidean structures.
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Connection with connections
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Connection with connections

@ A Euclidean structure is a flat Riemannian metric.
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Connection with connections

@ A Euclidean structure is a flat Riemannian metric.

@ An affine structure is a flat torsionfree affine connection.
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Connection with connections

@ A Euclidean structure is a flat Riemannian metric.
@ An affine structure is a flat torsionfree affine connection.

@ A projective structure is a flat normal projective connection.
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Connection with connections

@ A Euclidean structure is a flat Riemannian metric.
@ An affine structure is a flat torsionfree affine connection.

@ A projective structure is a flat normal projective connection.

@ In general, Ehresmann structures are examples of Cartan connections
for which the local invariants (curvature) vanish.
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Connection with connections

@ A Euclidean structure is a flat Riemannian metric.
@ An affine structure is a flat torsionfree affine connection.

@ A projective structure is a flat normal projective connection.

@ In general, Ehresmann structures are examples of Cartan connections
for which the local invariants (curvature) vanish.
o Cartan connections exist on fiber bundles and an Ehresmann structure
determines a flat connection on this fiber bundle with a canonical
section describing the local coordinates.
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Connection with connections

@ A Euclidean structure is a flat Riemannian metric.
@ An affine structure is a flat torsionfree affine connection.

@ A projective structure is a flat normal projective connection.

@ In general, Ehresmann structures are examples of Cartan connections
for which the local invariants (curvature) vanish.

o Cartan connections exist on fiber bundles and an Ehresmann structure
determines a flat connection on this fiber bundle with a canonical
section describing the local coordinates.

o Local deformation theory of geometric structures <=
local deformation theory of flat connections
— representations of 71(X).
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Quotients of domains

0 Geometric Structures = /35



Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:
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o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/T is a (G, X)-manifold covered by Q.
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/T is a (G, X)-manifold covered by Q.
o Convex RP"-structures: 2 C RP" convex domain.
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/T is a (G, X)-manifold covered by Q.
@ Convex RP"-structures: QQ C RP" convex domain.
@ Projective geometry inside a quadric Q is hyperbolic geometry.
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/T is a (G, X)-manifold covered by Q.

@ Convex RP"-structures: Q C RP" convex domain.

@ Projective geometry inside a quadric Q is hyperbolic geometry.
@ Hyperbolic distance is defined by cross-ratios: d(x,y) = log[A, x,y, B].

B
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/T is a (G, X)-manifold covered by Q.
o Convex RP"-structures: 2 C RP" convex domain.

@ Projective geometry inside a quadric Q is hyperbolic geometry.
@ Hyperbolic distance is defined by cross-ratios: d(x,y) = log[A, x,y, B].

B

@ Projective geometry contains hyperbolic geometry.
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Quotients of domains

@ Suppose that Q C X is an open subset invariant under a subgroup
' C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/T is a (G, X)-manifold covered by Q.

@ Convex RP"-structures: Q C RP" convex domain.

@ Projective geometry inside a quadric Q is hyperbolic geometry.
@ Hyperbolic distance is defined by cross-ratios: d(x,y) = log[A, x,y, B].

B

@ Projective geometry contains hyperbolic geometry.
o Hyperbolic structures are convex RP"-structures.
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Projective deformation of equilateral 60°-triangle tiling

This tesselation of the open triangular region in RP? is equivalent to the
tiling of the Euclidean plane by equilateral triangles.




Example: Projective deformation of a hyperbolic tiling

~ = = %WA/

Both domains are tiled by 60°,60°,45°)-triangles, invariant under a
Coxeter group I'(3,3,4). First is bounded by a conic (hyperbolic
geometry). Second is invariant under Weyl group associated to

2 -1 =2
-1 2 -1
-1 -1 2

with domain bounded by C'*®-convex curve where 0 < a < 1.
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Example: Hyperbolic structure on genus two surface
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Example: Hyperbolic structure on genus two surface

@ ldentify sides of an octagon to form a closed genus two surface.

)

£ a)
(O
by
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Example: Hyperbolic structure on genus two surface

@ ldentify sides of an octagon to form a closed genus two surface.

)

£ a)
(O
by

@ Realize these identifications isometrically for a regular 45°-octagon.

/4/\"

7
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Example: Quasi-Fuchsian CP!-structure




Example: Quasi-Fuchsian CP!-structure

@ Start with a hyperbolic structure on a surface X represented as a
quotient H?/Ty where Iy C PSL(2,R) = Isom™(H?). Regard H? as
an open hemisphere in CP! invariant under PSL(2,R).
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o Hyperbolic structure = CP'-structure.
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@ Start with a hyperbolic structure on a surface X represented as a
quotient H?/Ty where Iy C PSL(2,R) = Isom™(H?). Regard H? as
an open hemisphere in CP! invariant under PSL(2,R).

o Hyperbolic structure = CP'-structure.
@ Deform the representation of 'y in PSL(2,C) D PSL(2,R).




Example: Quasi-Fuchsian CP!-structure

@ Start with a hyperbolic structure on a surface X represented as a
quotient H?/Ty where Iy C PSL(2,R) = Isom™(H?). Regard H? as
an open hemisphere in CP! invariant under PSL(2,R).

o Hyperbolic structure = CP'-structure.

@ Deform the representation of 'y in PSL(2,C) D PSL(2,R).

@ For I'; sufficiently near g, the deformation I'; arises from an
embedding of Iy as a discrete group acting properly an open subset
Q c CP. Unless I+ is Fuchsian, 092 is a fractal Jordan curve of
Hausdorff dimension > 1 (Bowen).




Example: Anti-de Sitter structures
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Example: Anti-de Sitter structures

@ Anti-de Sitter space AdS" is the model space of constant negative
curvature Lorentzian geometry.
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Example: Anti-de Sitter structures

@ Anti-de Sitter space AdS" is the model space of constant negative
curvature Lorentzian geometry.

o AdS" 22 0(n —1,2)/(0(n —2) x O(L,2)).
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Example: Anti-de Sitter structures

@ Anti-de Sitter space AdS" is the model space of constant negative
curvature Lorentzian geometry.

o AdS" 22 0(n —1,2)/(0(n —2) x O(L,2)).

@ Let H=PSL(2,R). For n = 3, anti-de Sitter geometry identifies with
G = H x H acting (isometrically) on X = H by left- and
right-multiplication:

(h1, hp) : x — hyxhy?
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Example: Anti-de Sitter structures

@ Anti-de Sitter space AdS" is the model space of constant negative
curvature Lorentzian geometry.

o AdS" 2 O(n—1,2)/(0(n —2) x O(1,2)).
@ Let H=PSL(2,R). For n = 3, anti-de Sitter geometry identifies with

G = H x H acting (isometrically) on X = H by left- and
right-multiplication:

(h1, hp) : x — hyxhy?

@ A closed 3-dimensional AdS-manifold is a quotient X /graph(p) where
I C H is a cocompact lattice and

graph(p) = {(v,p(7)) | v € T}

is the graph of p. (Kulkarni-Raymond 1985)
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Example:Flat Lorentz 3-Manifolds
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Example:Flat Lorentz 3-Manifolds

@ Minkowski space E™! is the model space for flat Lorentzian geometry.
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Example:Flat Lorentz 3-Manifolds

@ Minkowski space E™! is the model space for flat Lorentzian geometry.

@ Its isometries are affine transformations whose linear part lies in the
orthogonal group O(n —1,1).
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Example:Flat Lorentz 3-Manifolds

@ Minkowski space E™! is the model space for flat Lorentzian geometry.

@ Its isometries are affine transformations whose linear part lies in the
orthogonal group O(n —1,1).

@ Let H=PSL(2,R) as before. For n = 3, this geometry is that of the
tangent bundle G = TH = H xaq b acting on X = G/H = E™L.
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Analogy with quasi-Fuchsian deformations

@ Every noncompact semisimple Lie group (locally) contains SL(2, R).
A rich source of geometries arise from deforming hyperbolic geometry.

0 Geometric Structures = /35
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@ Every noncompact semisimple Lie group (locally) contains SL(2, R).
A rich source of geometries arise from deforming hyperbolic geometry.

® Let / = +/—1. Quasi-Fuchsian deformations arise from deforming

PSL(2,R) < PSL(2,R[i]) = PSL(2,C).
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Analogy with quasi-Fuchsian deformations

@ Every noncompact semisimple Lie group (locally) contains SL(2,R).
A rich source of geometries arise from deforming hyperbolic geometry.

® Let / = +/—1. Quasi-Fuchsian deformations arise from deforming
PSL(2,R) — PSL(2,R[i]) = PSL(2,C).

o Affine deformations (isometric actions on Minkowski space) arise from
deforming in

PSL(2,R) < TPSL(2,R) = PSL(2, R[¢]) = Isom®(E>1),

where €2 = 0, corresponding to infinitesimal deformations of
hyperbolic geometry.
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Analogy with quasi-Fuchsian deformations

@ Every noncompact semisimple Lie group (locally) contains SL(2,R).
A rich source of geometries arise from deforming hyperbolic geometry.

® Let / = +/—1. Quasi-Fuchsian deformations arise from deforming
PSL(2,R) — PSL(2,R[i]) = PSL(2,C).

o Affine deformations (isometric actions on Minkowski space) arise from
deforming in

PSL(2,R) < TPSL(2,R) = PSL(2, R[¢]) = Isom®(E>1),

where €2 = 0, corresponding to infinitesimal deformations of
hyperbolic geometry.

@ Anti-de Sitter deformations arise from
PSL(2,R) < O(2,2) = PSL(2,R[v]) = PSL(2,R) x PSL(2,R)

where v2 = +1.
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Modeling structures on representations of
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Modeling structures on representations of

@ Marked (G, X)-structure on X: diffeomorphism X L M where M is a
(G, X)-manifold.
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Modeling structures on representations of

@ Marked (G, X)-structure on X: diffeomorphism X L M where M is a
(G, X)-manifold.
@ Define deformation space

Dex)(X) = {Marked (G, X)-structures on Z}/Isotopy
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Modeling structures on representations of

@ Marked (G, X)-structure on X: diffeomorphism X L M where M is a
(G, X)-manifold.

@ Define deformation space
Dex)(X) = {Marked (G, X)-structures on Z}/Isotopy

@ Mapping class group
Mod(X) = wo(DifF(Z))

acts on D¢ x)(X).
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Representation varieties
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Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.

0 Geometric Structures = /35



Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
@ The set Hom(m, G) of homomorphisms

T— G

enjoys the natural structure of an affine algebraic variety
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Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
@ The set Hom(m, G) of homomorphisms

T— G

enjoys the natural structure of an affine algebraic variety
o Invariant under Aut(7) x Aut(G).
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Representation varieties

o Let m = (Xi,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
@ The set Hom(m, G) of homomorphisms

T— G

enjoys the natural structure of an affine algebraic variety

o Invariant under Aut(7) x Aut(G).
o Action of Out(w) := Aut(r)/Inn(7) on

Hom(m, G)/G := Hom(m, G)/({1} x Inn(G))
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@ A marked structure determines a developing map ¥ — X and a
holonomy representation m — G.
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@ A marked structure determines a developing map ¥ — X and a
holonomy representation m — G.

o Globalize the coordinate charts and coordinate changes respectively.
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@ A marked structure determines a developing map ¥ — X and a
holonomy representation m — G.

o Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

De.x)(Z) 2 Hom(rr, G)/G
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holonomy representation m — G.
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@ A marked structure determines a developing map ¥ — X and a
holonomy representation m — G.

o Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

De.x)(Z) 2 Hom(rr, G)/G

o Equivariant respecting

Mod (%) —» Out (m (X))
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@ A marked structure determines a developing map ¥ — X and a
holonomy representation m — G.

o Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

De.x)(Z) 2 Hom(rr, G)/G

o Equivariant respecting

Mod (%) —» Out (m (X))

@ (Thurston): The mapping hol is a local homeomorphism.
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@ A marked structure determines a developing map ¥ — X and a
holonomy representation m — G.

o Globalize the coordinate charts and coordinate changes respectively.

@ Holonomy defines a mapping

De.x)(Z) 2 Hom(rr, G)/G

o Equivariant respecting

Mod (%) —» Out (m (X))

@ (Thurston): The mapping hol is a local homeomorphism.
@ For quotient structures, hol is an embedding.
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Euclidean and hyperbolic structures

o Euclidean geometry: When X = R? and G = Isom(RR?), every only
closed orientable Euclidean surface ~ T2. The deformation space
D (6.x)(X) identifies with H? x R*.

0 Geometric Structures = /35



Euclidean and hyperbolic structures

o Euclidean geometry: When X = R? and G = Isom(RR?), every only
closed orientable Euclidean surface ~ T2. The deformation space
D (6.x)(X) identifies with H? x R*.

@ The coordinate in R™ corresponds to the area of the structure.

0 Geometric Structures /'35



Euclidean and hyperbolic structures

o Euclidean geometry: When X = R? and G = Isom(RR?), every only
closed orientable Euclidean surface ~ T2. The deformation space

D (6.x)(X) identifies with H? x R*.
@ The coordinate in R™ corresponds to the area of the structure.

@ Mod(X) = PSL(2,Z) acts properly discretely,

0 Geometric Structures



Euclidean and hyperbolic structures

o Euclidean geometry: When X = R? and G = Isom(RR?), every only
closed orientable Euclidean surface ~ T2. The deformation space
D (6,x)(X) identifies with H? x R

@ The coordinate in R™ corresponds to the area of the structure.

@ Mod(X) = PSL(2,Z) acts properly discretely,

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space D¢ x)(X) identifies with Fricke space F(X).

0 Geometric Structures - /35



Euclidean and hyperbolic structures

o Euclidean geometry: When X = R? and G = Isom(RR?), every only
closed orientable Euclidean surface ~ T2. The deformation space
D (6,x)(X) identifies with H? x R

@ The coordinate in R™ corresponds to the area of the structure.

@ Mod(X) = PSL(2,Z) acts properly discretely,

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space D¢ x)(X) identifies with Fricke space F(X).

@ |dentifies with Teichmiiller space T(X) (marked conformal structures)
via Klein-Koebe-Poincaré Uniformization Theorem.

0 Geometric Structures - /35



Euclidean and hyperbolic structures

o Euclidean geometry: When X = R? and G = Isom(RR?), every only
closed orientable Euclidean surface ~ T2. The deformation space
D (6,x)(X) identifies with H? x R

@ The coordinate in R™ corresponds to the area of the structure.

@ Mod(X) = PSL(2,Z) acts properly discretely,

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space D¢ x)(X) identifies with Fricke space F(X).

@ |dentifies with Teichmiiller space T(X) (marked conformal structures)
via Klein-Koebe-Poincaré Uniformization Theorem.

@ hol embeds §(X) as a connected component of Hom(m, G)/G.

0 Geometric Structures - /35
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o Euclidean geometry: When X = R? and G = Isom(RR?), every only
closed orientable Euclidean surface ~ T2. The deformation space
D (6,x)(X) identifies with H? x R

@ The coordinate in R™ corresponds to the area of the structure.

@ Mod(X) = PSL(2,Z) acts properly discretely,

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space D¢ x)(X) identifies with Fricke space F(X).

@ |dentifies with Teichmiiller space T(X) (marked conformal structures)
via Klein-Koebe-Poincaré Uniformization Theorem.

@ hol embeds §(X) as a connected component of Hom(m, G)/G.
F(X) ~ R%~6 and Mod(X) acts properly discretely.
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Projective structures

@ When X = CP! and G = PGL(2,C), Poincaré identified D6.x)(X)
with an affine bundle over T(X) whose fiber over Riemann surface R
is the vector space HO(R, K?) of holomorphic quadratic differentials.
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Projective structures

@ When X = CP! and G = PGL(2,C), Poincaré identified D6.x)(X)
with an affine bundle over T(X) whose fiber over Riemann surface R
is the vector space HO(R, K?) of holomorphic quadratic differentials.

o Thus D¢ x)(X) ~ R'?6712 and Mod(X) acts properly discretely,
containing quasi-Fuchsian representations.

@ Alternate geometric description in terms of hyperbolic structures
“bent” along measured geodesic lamination in H3 (Thurston 1976).

® When X = RP? and G = PGL(3,R), the deformation space
Dex)(X) = R108-16 » N (Choi-G 1990).

o Convex structures comprise one component, which Labourie and Loftin
(1999) identify as vector bundle over F(X) whose fiber over Riemann
surface R is the vector space H(R, K3) of holomorphic cubic
differentials.

@ “Teichmiiller" component of Hom(w, G)/G, discovered for general
R-split groups G by Hitchin (1990), for G = PGL(3,R).

o For general split real forms, these Hitchin representations are discrete
embeddings (Labourie 2005) and correspond to geometric structures
on compact manifolds (Guichard-Wienhard 2011).
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Example:Complete affine 3-manifolds

@ A complete affine manifold is a quotient
M" =R"/T

where [ C Aff(n,R) is a discrete subgroup acting properly and freely.
@ In dimension 3, two types:

o [ solvable;
o [ free of rank > 2.

@ Solvable case classified (late 1970's, Fried-G)
o includes compact M3 (T2-bundles over S?!)

@ Free case, first examples discovered by Margulis (early 1980's),
answering question raised by Milnor.

@ Deformation space is a bundle of convex cones over the Fricke space
of hyperbolic structures (G-Labourie-Margulis 2010).
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o Complete affine 3-manifold R3/T": proper affine deformation
r— S0(2,1) x R?!
v — (L(7), u(v))
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Y = H?/L(T)

0 Geometric Structures = /35



Complete flat Lorentz manifolds

o Complete affine 3-manifold R3/T": proper affine deformation
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v — (L(7), u(v))

o L embeds ' onto Fuchsian group; noncompact quotient hyperbolic
surface (Fried-G, Mess 1990)

¥ = H?/L(I")
@ The cocycle u corresponds to an infinitesimal deformation
[u] € HY(T,R?1) = HY(Z,50(2,1))

of the hyperbolic surface ¥ such that every (laminar) geodesic
infinitesimally lengthens.
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Complete flat Lorentz manifolds

o Complete affine 3-manifold R3/T": proper affine deformation
r— S0(2,1) x R?!
v — (L(7), u(v))

o L embeds ' onto Fuchsian group; noncompact quotient hyperbolic
surface (Fried-G, Mess 1990)

¥ = H?/L(I")
@ The cocycle u corresponds to an infinitesimal deformation
[u] € HY(T,R?1) = HY(Z,50(2,1))

of the hyperbolic surface ¥ such that every (laminar) geodesic
infinitesimally lengthens.
@ Drumm (1990) Every noncompact complete hyperbolic surface ¥ of
finite type admits a proper affine deformation, with quotient solid
handlebody.
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Ping-pong in H?

@ Start with mutually disjoint halfplanes by, hf,. N P s
@ paired by isometries h; £ H2\ b7
® g1,...,8n freely generate group with fundamental domain

H2 \ U hiE.
i=1
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Cyclic groups

A A
W
I’

I

A boost identifying two parallel planes
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Cyclic groups

@ Most elements « € I are boosts, affine deformations of hyperbolic
elements of SO(2,1). A fundamental domain is the parallel slab
bounded by two parallel planes.

A
=
y’

I

A boost identifying two parallel planes
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Parallel slabs don't work!

Ok
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Parallel slabs don't work!

Ok

In H2, halfplanes hf: are disjoint;

Their complement is a fundamental domain.
In affine space, halfspaces disjoint = parallel!

Complements of parallel slabs always intersect,

e © 6 ¢ ¢

Unsuitable for building Schottky groups!
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Drumm’s Schottky groups

The classical construction of Schottky groups fails using affine half-spaces
and slabs. Drumm'’s geometric construction uses crooked planes, PL

hypersurfaces adapted to the Lorentz geometry which bound fundamental
polyhedra for Schottky groups.
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Classification

@ Deformation space is a bundle over the Fricke space §(X), with fiber
consisting of equivalence classes of proper affine deformations;

o If OX has b components, then F(X) ~ [0,00)? x (0, 00) 3X(&)=b,
o Fibers open convex cones in R=3X(>) defined by signed Lorentzian
lengths.

@ Deformation space of complete affine structures on open solid
handlebody of genus two falls into 4 components depending on 4
topological types of surfaces with x(X) = —1, and every structure has
natural decomposition by crooked planes (Charette-Drumm-G).

@ (2012) Choi and Danciger-Guéritaud-Kassel have announced,
independently, quite different proofs of Topological Tameness: Every
nonsolvable complete flat affine 3-manifold (Margulis spacetime) is
homeomorphic to a solid handlebody.
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(n) One-holed Klein bottle

Geometric Structures

(m) One-holed torus



Tiling the deformation space
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Tiling the deformation space

@ When S ~ X3, Gy 2, then D(S) has 3 or 4 sides, and each ideal
triangulation can be realized crookedly.
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each corresponding to simple loop.
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Tiling the deformation space

@ When S ~ X3, Gy 2, then D(S) has 3 or 4 sides, and each ideal
triangulation can be realized crookedly.

@ These surfaces have finite mapping class group and finitely many
isotopy classes of simple closed curves.

@ In other cases, properness region bounded by infinitely many intervals,
each corresponding to simple loop.

@ O-points lie on intervals or are points of strict convexity (irrational
laminations) (G-Margulis-Minsky).

@ Birman-Series argument = For 1-holed torus, these points of strict
convexity have Hausdorff dimension zero.
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Realizing an ideal triangulation of the one-holed torus by
crooked planes
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@ Properness region tiled by triangles.

@ Triangles «— ideal triangulations of ¥.
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Realizing an ideal triangulation of the one-holed torus by
crooked planes

@ Properness region tiled by triangles.
@ Triangles «— ideal triangulations of ¥.

@ Flip of ideal triangulation +— moving to adjacent triangle.
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