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@ Enhancing Topology with Geometry
© Representation varieties and character varieties
© Symplectic geometry

@ Real projective structures on surfaces
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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the
study of properties of an abstract space X which are invariant under a
transitive group G of transformations of X.

Library of Congress
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Putting geometric structure on a topological space
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

U 22 1ha(Ua) € X
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 2% th0(Ua) € X
@ On components of U, N U, g € G such that
go° wa = 1/%--
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 2% th0(Ua) € X
@ On components of U, N U, g € G such that
go° wa = f(/}ﬁu
@ Local (G, X)-geometry independent of patch.
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Putting geometric structure on a topological space

@ Topology: Smooth manifold ¥ with coordinate patches U,;
o Charts — diffeomorphisms

Ua 2% th0(Ua) € X
@ On components of U, N U, g € G such that
go° wa = f(/}ﬁu

@ Local (G, X)-geometry independent of patch.
o (Ehresmann 1936): Geometric manifold M modeled on X.
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Classfication of geometric structures
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Classfication of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).
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Classfication of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).

@ Example: The 2-sphere does not admit Euclidean-geometry structure:
A metrically accurate world atlas.
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Classfication of geometric structures

@ Basic question: Given a topology ¥ and a geometry X = G/H,
determine all possible ways of providing ¥ with the local geometry of
(X, G).

@ Example: The 2-sphere does not admit Euclidean-geometry structure:
A metrically accurate world atlas.

@ Example: The 2-torus admits a rich moduli space of
Euclidean-geometry structures.
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Quotients of domains
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Quotients of domains

@ Suppose that  C X is an open subset invariant under a subgroup
I C G such that:
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Quotients of domains

@ Suppose that  C X is an open subset invariant under a subgroup
I C G such that:

o [ is discrete;
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Quotients of domains

@ Suppose that  C X is an open subset invariant under a subgroup
I C G such that:

o [ is discrete;
o [ acts properly and freely on Q
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Quotients of domains

@ Suppose that  C X is an open subset invariant under a subgroup
I C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.

0 Surface group representations / 29



Quotients of domains

@ Suppose that  C X is an open subset invariant under a subgroup
I C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.
o Convex RP"-structures: 2 C RP" convex domain.
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Quotients of domains

@ Suppose that  C X is an open subset invariant under a subgroup
I C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.
o Convex RP"-structures: 2 C RP" convex domain.

@ For example, the projective geometry of the interior of a quadric Q is
hyperbolic geometry.
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Quotients of domains

@ Suppose that  C X is an open subset invariant under a subgroup
I C G such that:

o [ is discrete;
o [ acts properly and freely on Q

@ Then M =Q/I is a (G, X)-manifold covered by €.
o Convex RP"-structures: 2 C RP" convex domain.

@ For example, the projective geometry of the interior of a quadric Q is
hyperbolic geometry.

°
The hyperbolic distance is defined by cross-ratios:

d(va) = |og[A,x,y, B]
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Example: A projective tiling by equilateral 60°-triangles

This tesselation of the open triangular region is equivalent to the tiling of
the Euclidean plane by equilateral triangles.
0 u roi i




Example: A projective deformation of a tiling of the

hyperbolic plane by (60°,60°,45°)-triangles.

\%@sy AN AV/4

Both domains are tiled by triangles, invariant under a Coxeter group
(3,3,4). The first domain is bounded by a conic and enjoys hyperbolic
geometry. The second domain is bounded by C'*®-convex curve where

O<a<l.

0 Surface group representations



Example: A hyperbolic structure on a surface of genus two

&
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Example: A hyperbolic structure on a surface of genus two

@ ldentify sides of an octagon to form a closed genus two surface.

by

0 Surface group representations / 29



Example: A hyperbolic structure on a surface of genus two

@ ldentify sides of an octagon to form a closed genus two surface.

)
% )
O
by

@ Realize these identifications isometrically for a regular 45°-octagon.
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Modeling structures on representations of
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Modeling structures on representations of

@ Marked (G, X)-structure on ¥: diffeomorphism X L. M where M is a
(G, X)-manifold.
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Modeling structures on representations of

@ Marked (G, X)-structure on ¥: diffeomorphism X L\ M where M is a
(G, X)-manifold.

@ Marked (G, X)-structures (f;, M;) are isotopic <= 3 isomorphism
My 2 My with o fy = fo.
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Modeling structures on representations of

@ Marked (G, X)-structure on ¥: diffeomorphism X L\ M where M is a
(G, X)-manifold.

@ Marked (G, X)-structures (f;, M;) are isotopic <= 3 isomorphism
My 2 My with o fy = fo.

@ Define the deformation space

D6 x)(X) = {Marked (G, X)-structures on Z}/Isotopy
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Modeling structures on representations of

@ Marked (G, X)-structure on ¥: diffeomorphism X L\ M where M is a
(G, X)-manifold.

@ Marked (G, X)-structures (f;, M;) are isotopic <= 3 isomorphism
My 2 My with o fy = fo.
@ Define the deformation space

D6 x)(X) = {Marked (G, X)-structures on Z}/Isotopy

e 7 € Diff(X) acts on marked (G, X)-structures: (f, M) — (f on, M).
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Modeling structures on representations of

@ Marked (G, X)-structure on ¥: diffeomorphism X L\ M where M is a
(G, X)-manifold.

@ Marked (G, X)-structures (f;, M;) are isotopic <= 3 isomorphism
My 2 My with o fy = fo.

@ Define the deformation space
D6 x)(X) = {Marked (G, X)-structures on Z}/Isotopy

e 7 € Diff(X) acts on marked (G, X)-structures: (f, M) — (f on, M).
@ Mapping class group
Mod(E) := o (Diff(X))
acts on D¢ x)(X).
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Representation varieties
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Representation varieties

o Let m = (Xy,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
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Representation varieties

o Let m = (Xy,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.
@ The set Hom(7, G) of homomorphisms

T — G

enjoys the natural structure of an affine algebraic variety.

0 Surface group representations



Representation varieties

o Let m = (Xy,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.

@ The set Hom(7, G) of homomorphisms
T— G

enjoys the natural structure of an affine algebraic variety.

@ Evaluation on the generators

Hom(rw, G) — G"
)

embeds Hom(r, G) onto an algebraic subset of GL(N,R)N.
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Representation varieties

o Let m = (Xy,...,X,) be finitely generated and G C GL(N,R) a linear
algebraic group.

@ The set Hom(7, G) of homomorphisms
T— G

enjoys the natural structure of an affine algebraic variety.

@ Evaluation on the generators

Hom(rw, G) — G"
)

embeds Hom(r, G) onto an algebraic subset of GL(N,R)N.
@ Structure is {Xi, ..., X, }-independent.
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Representation varieties

)

Let m = (X1,..., X,) be finitely generated and G C GL(N,R) a linear
algebraic group.

The set Hom(7, G) of homomorphisms
T— G

enjoys the natural structure of an affine algebraic variety.
Evaluation on the generators
Hom(w, G) — G"
pr— (p(X1),...,p(Xn))

embeds Hom(r, G) onto an algebraic subset of GL(N,R)N.
Structure is {Xi, ..., X, }-independent.
Classical topology (and Zariski topology).
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Natural symmetries
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Natural symmetries

@ Hom(m, G) admits an action of Aut(7) x Aut(G):
-1
ALY N &

where (¢, ) € Aut(m) x Aut(G), p € Hom(m, G).
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Natural symmetries

@ Hom(m, G) admits an action of Aut(7) x Aut(G):
-1
ALY N &

where (¢, ) € Aut(m) x Aut(G), p € Hom(m, G).
@ Preserves the algebraic structure.
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Natural symmetries

@ Hom(m, G) admits an action of Aut(7) x Aut(G):
-1
ALY N &

where (¢, ) € Aut(m) x Aut(G), p € Hom(m, G).
@ Preserves the algebraic structure.
@ The quotient

Hom(w, G)/G := Hom(w, G)/({1} x Inn(G))
under the subgroup
{1} x Inn(G) C Aut(m) x Aut(G)

is the space of equivalence classes of flat connections on G-bundles
over any space with fundamental group .
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Natural symmetries

@ Hom(m, G) admits an action of Aut(7) x Aut(G):
-1
ALY N &

where (¢, ) € Aut(m) x Aut(G), p € Hom(m, G).
@ Preserves the algebraic structure.
@ The quotient

Hom(w, G)/G := Hom(w, G)/({1} x Inn(G))
under the subgroup
{1} x Inn(G) C Aut(m) x Aut(G)

is the space of equivalence classes of flat connections on G-bundles
over any space with fundamental group .
@ Inherits an action of

Out(7) := Aut(m)/Inn(7).
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Holonomy
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@ A marked structure determines a developing map ¥ — X anda
holonomy representation m1 — G.
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@ A marked structure determines a developing map ¥ — X anda
holonomy representation m1 — G.

o Globalize the coordinate charts and coordinate changes respectively.
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@ A marked structure determines a developing map ¥ — X anda
holonomy representation m1 — G.

o Globalize the coordinate charts and coordinate changes respectively.

@ Well-defined up to transformations in G.
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@ A marked structure determines a developing map ¥ — X anda
holonomy representation m1 — G.

o Globalize the coordinate charts and coordinate changes respectively.
@ Well-defined up to transformations in G.

@ Holonomy defines a mapping

D (6,%(E) == Hom(, G)/G
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@ A marked structure determines a developing map ¥ — X anda
holonomy representation m1 — G.

o Globalize the coordinate charts and coordinate changes respectively.
@ Well-defined up to transformations in G.

@ Holonomy defines a mapping

D (6.)(E) 2 Hom(m, 6)/G
@ Equivariant respecting

Mod(X) — Out(m (X))
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@ A marked structure determines a developing map ¥ — X anda
holonomy representation m1 — G.

Globalize the coordinate charts and coordinate changes respectively.

Well-defined up to transformations in G.

Holonomy defines a mapping

D (6,%(E) == Hom(, G)/G

Equivariant respecting
Mod(X) — Out(m (X))

@ (Thurston): The mapping hol is a local homeomorphism.
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@ A marked structure determines a developing map ¥ — X anda
holonomy representation m — G.

Globalize the coordinate charts and coordinate changes respectively.

Well-defined up to transformations in G.

Holonomy defines a mapping

D (6,%(E) == Hom(, G)/G

Equivariant respecting

Mod(X) — Out(m (X))

(]

(Thurston): The mapping hol is a local homeomorphism.

(]

For quotient structures, hol is an embedding.
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Examples: Hyperbolic structures
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Examples: Hyperbolic structures

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space ® ¢ x)(X) identifies with the Fricke-Teichmiiller
space §(X) of X.
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Examples: Hyperbolic structures

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space ® ¢ x)(X) identifies with the Fricke-Teichmiiller

space §(X) of X.
@ |dentifies with Teichmiiller space (marked conformal structures via
Uniformization Theorem.
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Examples: Hyperbolic structures

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space ® ¢ x)(X) identifies with the Fricke-Teichmiiller
space §(X) of X.

@ |dentifies with Teichmiiller space (marked conformal structures via
Uniformization Theorem.

@ hol embeds §(X) as a connected component of Hom(w, G)/G).
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Examples: Hyperbolic structures

@ Hyperbolic geometry: When X = H? and G = Isom(H?), the
deformation space ® ¢ x)(X) identifies with the Fricke-Teichmiiller
space §(X) of X.

@ |dentifies with Teichmiiller space (marked conformal structures via
Uniformization Theorem.

@ hol embeds §(X) as a connected component of Hom(w, G)/G).
o F(X) ~ R%~6 and Mod(X) acts properly discretely.
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Example: CP!-structures
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Example: CP!-structures

® When X = CP' and G = PGL(2,C), Poincaré identified D ¢ x)(X)
with an affine bundle over §F(X) whose fiber over a Riemann surface R
is the vector space H(R, K?) of holomorphic quadratic differentials.
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Example: CP!-structures

® When X = CP' and G = PGL(2,C), Poincaré identified D ¢ x)(X)
with an affine bundle over §F(X) whose fiber over a Riemann surface R
is the vector space H(R, K?) of holomorphic quadratic differentials.

o Thus D¢ x)(X) = R'26712 and Mod(X) acts properly discretely.
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Example: CP!-structures

® When X = CP' and G = PGL(2,C), Poincaré identified D ¢ x)(X)
with an affine bundle over §F(X) whose fiber over a Riemann surface R
is the vector space H(R, K?) of holomorphic quadratic differentials.

o Thus D¢ x)(X) = R'26712 and Mod(X) acts properly discretely.

° Q(G,X)(Z) contains the space of quasi-Fuchsian representations.
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Example: RP2-structures
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Example: RP2-structures

@ When X = RP? and G = PGL(3,R), the deformation space

D(6,x)(X) is a vector bundle over F(X) whose fiber over a Riemann
surface R is the vector space HO(R, K3) of holomorphic cubic
differentials (Labourie, Loftin)
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Example: RP2-structures

@ When X = RP? and G = PGL(3,R), the deformation space
D(6,x)(X) is a vector bundle over F(X) whose fiber over a Riemann

surface R is the vector space HO(R, K3) of holomorphic cubic
differentials (Labourie, Loftin)

@ For any R-split semisimple G, Hitchin found a contractible
component containing F(X).
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Example: RP2-structures

@ When X = RP? and G = PGL(3,R), the deformation space

D(6,x)(X) is a vector bundle over F(X) whose fiber over a Riemann
surface R is the vector space HO(R, K3) of holomorphic cubic
differentials (Labourie, Loftin)

@ For any R-split semisimple G, Hitchin found a contractible
component containing F(X).

@ More recently, Labourie showed all representations in this component
are discrete embeddings and that Mod(X) acts properly discretely.
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Example: RP2-structures

@ When X = RP? and G = PGL(3,R), the deformation space
D(6,x)(X) is a vector bundle over F(X) whose fiber over a Riemann
surface R is the vector space HO(R, K3) of holomorphic cubic
differentials (Labourie, Loftin)

@ For any R-split semisimple G, Hitchin found a contractible
component containing F(X).

@ More recently, Labourie showed all representations in this component
are discrete embeddings and that Mod(X) acts properly discretely.

o Markedly different from CP!-structures, where the holonomy
representations may not be discrete embeddings and hol is very
complicated.
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Character variety
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Character variety

@ Even though G acts algebraically on Hom(w, G), the quotient
Hom(m, G)/G) is not algebraic.
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Character variety

@ Even though G acts algebraically on Hom(w, G), the quotient
Hom(m, G)/G) is not algebraic.

@ The GIT quotient Hom(7, G)//G is an Out()-invariant affine
algebraic variety.
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Character variety

@ Even though G acts algebraically on Hom(w, G), the quotient
Hom(m, G)/G) is not algebraic.

@ The GIT quotient Hom(7, G)//G is an Out()-invariant affine
algebraic variety.

@ Coordinate ring is the invariant subring

C[Hom(rr, G)//G] = C[Hom(r, G)]® C C[Hom(, G)].
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Character variety

@ Even though G acts algebraically on Hom(w, G), the quotient
Hom(m, G)/G) is not algebraic.

@ The GIT quotient Hom(7, G)//G is an Out()-invariant affine
algebraic variety.

@ Coordinate ring is the invariant subring
C[Hom(rr, G)//G] = C[Hom(r, G)]® C C[Hom(, G)].

@ Examples are functions f,, associated to:
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Character variety

@ Even though G acts algebraically on Hom(w, G), the quotient
Hom(m, G)/G) is not algebraic.

@ The GIT quotient Hom(7, G)//G is an Out()-invariant affine
algebraic variety.

@ Coordinate ring is the invariant subring
C[Hom(rr, G)//G] = C[Hom(r, G)]® C C[Hom(, G)].

@ Examples are functions f,, associated to:
@ A conjugacy class [a], where a € T;
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Character variety

@ Even though G acts algebraically on Hom(w, G), the quotient
Hom(m, G)/G) is not algebraic.

@ The GIT quotient Hom(7, G)//G is an Out()-invariant affine
algebraic variety.

@ Coordinate ring is the invariant subring
C[Hom(rr, G)//G] = C[Hom(r, G)]® C C[Hom(, G)].

@ Examples are functions f,, associated to:
@ A conjugacy class [a], where a € T;
@ An Inn(G)-invariant function G LR

0 Surface group representations / 29



Character functions f, on representation varieties
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Character functions f, on representation varieties

@ Conjugacy class of o € w corresponds to free homotopy class of
closed oriented loop o C .
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Character functions f, on representation varieties

@ Conjugacy class of o € w corresponds to free homotopy class of
closed oriented loop o C .

o Invariant function G - R == Function fo on Hom(m, G)/G:

Hom(r, G)/G ‘= R
[o] — f(p(a))
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Character functions f, on representation varieties

@ Conjugacy class of o € w corresponds to free homotopy class of
closed oriented loop o C .

o Invariant function G - R == Function fo on Hom(m, G)/G:

Hom(r, G)/G ‘= R
[o] — f(p(a))

o Example: Trace GL(n,R) L R
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Character functions f, on representation varieties

@ Conjugacy class of o € w corresponds to free homotopy class of
closed oriented loop o C .

o Invariant function G - R == Function fo on Hom(m, G)/G:

Hom(r, G)/G ‘= R
[o] — f(p(a))

o Example: Trace GL(n,R) > R
@ Another example: Displacement length

U(A) = Xmin2 d(x, A(x))

€H

tr(A) = 42 cosh (£(A)/2) if A hyperbolic
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Character functions f, on representation varieties

@ Conjugacy class of o € w corresponds to free homotopy class of
closed oriented loop o C .

o Invariant function G - R == Function fo on Hom(m, G)/G:

Hom(r, G)/G ‘= R
[o] — f(p(a))

o Example: Trace GL(n,R) > R
@ Another example: Displacement length

U(A) = eréu'nz d(x, A(x))
tr(A) = 42 cosh (£(A)/2) if A hyperbolic

@ On F(X), ¢, associates to a marked hyperbolic surface ¥ ~ M length
of the unique closed geodesic homotopic to « in M.
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Hamiltonian twist flows on Hom(7, G)

(o)
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Hamiltonian twist flows on Hom(7, G)

@ The Hamiltonian vector field Ham(7,) associated to f and « assigns
to a representation p in Hom(w, G) a tangent vector

Ham(f)[p] € T Hom(m, G)/G = H'(Z, gady)-

(o)
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Hamiltonian twist flows on Hom(7, G)

@ The Hamiltonian vector field Ham(7,) associated to f and « assigns
to a representation p in Hom(w, G) a tangent vector

Ham(f)[p] € T Hom(m, G)/G = H'(Z, gady)-

@ |t is represented by the (Poincaré dual) cycle-with-coefficient
supported on « and with coefficient

F(p(a)) € gadp-

(=)
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The one-parameter subgroup associated to an invariant

function
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The one-parameter subgroup associated to an invariant

function

@ Invariant function ]
G—R

and A € G = one-parameter subgroup
((t) = exp (tF(A)) € G,

where F(A) € g.
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The one-parameter subgroup associated to an invariant

function

@ Invariant function ]
G—R

and A € G = one-parameter subgroup
((t) = exp (tF(A)) € G,

where F(A) € g.

@ Centralizes A:
((DHACTT=A
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The one-parameter subgroup associated to an invariant

function
@ Invariant function ]
G—R

and A € G = one-parameter subgroup
((t) = exp (tF(A)) € G,

where F(A) € g.
@ Centralizes A:
LACT = A

@ F(A) is defined by duality:

1 &
s

df(A) € T4G = g*

Surface group representations




Generalized twist deformations
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Generalized twist deformations

@ When « is a simple closed curve, then a flow ®; on Hom(m, G) exists,
which covers the (local) flow of the Hamiltonian vector field Ham(f,).
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Generalized twist deformations

@ When « is a simple closed curve, then a flow ®; on Hom(m, G) exists,
which covers the (local) flow of the Hamiltonian vector field Ham(f,).

@ Example: a nonseparating curve Aj in
T =(A1,B1,...,Ag,Bg | ABIAT B AgBA BT = 1)

this flow has the following description in terms of generators:.
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Generalized twist deformations

@ When « is a simple closed curve, then a flow ®; on Hom(m, G) exists,
which covers the (local) flow of the Hamiltonian vector field Ham(f,).

@ Example: a nonseparating curve Aj in
T =(A1,B1,...,Ag,Bg | ABIAT B AgBA BT = 1)

this flow has the following description in terms of generators:.

@ ®.(v) = p(7) is constant if ~y is either A; for 1 < < g or B; for
2<i<g.
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Generalized twist deformations

@ When « is a simple closed curve, then a flow ®; on Hom(m, G) exists,
which covers the (local) flow of the Hamiltonian vector field Ham(f,).

@ Example: a nonseparating curve Aj in
T =(A1,B1,...,Ag,Bg | ABIAT B AgBA BT = 1)

this flow has the following description in terms of generators:.

@ ®.(v) = p(7) is constant if ~y is either A; for 1 < < g or B; for
2<i<g.

o &(B1) = p(B1)((t).
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Generalized twist deformations

@ When « is a simple closed curve, then a flow ®; on Hom(m, G) exists,
which covers the (local) flow of the Hamiltonian vector field Ham(f,).

@ Example: a nonseparating curve Aj in
T =(A1,B1,...,Ag,Bg | ABIAT B AgBA BT = 1)

this flow has the following description in terms of generators:.

@ ®.(v) = p(7) is constant if ~y is either A; for 1 < < g or B; for
2<i<g.

o ®(B1) = p(B1)C(t).
@ Similar construction when ~ separates..
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Some earthquake deformations in the universal covering




Some earthquake deformations in the universal covering

A deformation of a hyperbolic structure supported on a closed geodesic.
The developing map changes discontinuously, remaining equivariant under
a varying family of holonomy representations.
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Relation with the Mod(X)-action
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Relation with the Mod(X)-action

@ For G = SU(2), the equivalence relation generated by Dehn twists
about simple closed curves is measurably equal to that given by twist
flows (modulo Lebesgue nullsets).
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Relation with the Mod(X)-action

@ For G = SU(2), the equivalence relation generated by Dehn twists
about simple closed curves is measurably equal to that given by twist
flows (modulo Lebesgue nullsets).

@ Because generically, the (discrete) Dehn twist is an irrational rotation
of the circle (the trajectory of the twist flow).
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Relation with the Mod(X)-action

@ For G = SU(2), the equivalence relation generated by Dehn twists
about simple closed curves is measurably equal to that given by twist
flows (modulo Lebesgue nullsets).

@ Because generically, the (discrete) Dehn twist is an irrational rotation
of the circle (the trajectory of the twist flow).

@ Since the Hamiltonian potentials (traces of simple loops) generate the
character ring, their Hamiltonian flows generate a transitive action.
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Relation with the Mod(X)-action

@ For G = SU(2), the equivalence relation generated by Dehn twists
about simple closed curves is measurably equal to that given by twist
flows (modulo Lebesgue nullsets).

@ Because generically, the (discrete) Dehn twist is an irrational rotation
of the circle (the trajectory of the twist flow).

@ Since the Hamiltonian potentials (traces of simple loops) generate the
character ring, their Hamiltonian flows generate a transitive action.

@ Since the Dehn twists generate Mod(X), the action is ergodic on each
connected component.
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Relation with the Mod(X)-action

@ For G = SU(2), the equivalence relation generated by Dehn twists
about simple closed curves is measurably equal to that given by twist
flows (modulo Lebesgue nullsets).

@ Because generically, the (discrete) Dehn twist is an irrational rotation
of the circle (the trajectory of the twist flow).

@ Since the Hamiltonian potentials (traces of simple loops) generate the
character ring, their Hamiltonian flows generate a transitive action.

@ Since the Dehn twists generate Mod(X), the action is ergodic on each
connected component.

@ Ergodic on each component when G is compact (G, Pickrell-Xia).
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Twist and bulging deformations for RP?-structures
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Twist and bulging deformations for RP?-structures

@ When G = SL(3,R), the generic centralizer is conjugate to the
subgroup of diagonal matrices

A1 0 O
0 X O
0 0 A3
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Twist and bulging deformations for RP?-structures

@ When G = SL(3,R), the generic centralizer is conjugate to the
subgroup of diagonal matrices

A1 0 O
0 X O
0 0 A3

@ which has two one-parameter subgroups:
et 0 0 1 0 0
01 0f,e3|0 e 0
0 0 0 0 1

e—t
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Bulging conics along a triangle in RP?
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Bulging conics along a triangle in RP?

If Q is the interior of an invariant conic, the the first one-parameter
subgroup preserves €. The second one-parameter changes 2 by bulging it
along a triangle tangent to 0f2.
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Bulging domains in RP?
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Bulging domains in RP?

o Start with a strictly convex C! domain Q (like a disc). Each geodesic
embeds in a triangle tangent to 0.
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Bulging domains in RP?

o Start with a strictly convex C! domain Q (like a disc). Each geodesic
embeds in a triangle tangent to 0.

@ Choose disjoint lines A C Q, with instructions how to deform along A:
(for each line A C A, a one-parameter subgroup preserving \.
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Bulging domains in RP?

o Start with a strictly convex C! domain Q (like a disc). Each geodesic
embeds in a triangle tangent to 0.

@ Choose disjoint lines A C €, with instructions how to deform along A:
(for each line A C A, a one-parameter subgroup preserving .

@ Fixing a basepoint in the complement of A, bulge/earthquake the
curve inside the triangles tangent to 952.

@ Obtain a sequence of piecewise conics converging to the limit curve.
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Bulging domains in RP?

o Start with a strictly convex C! domain Q (like a disc). Each geodesic
embeds in a triangle tangent to 0.

@ Choose disjoint lines A C €, with instructions how to deform along A:
(for each line A C A, a one-parameter subgroup preserving .

@ Fixing a basepoint in the complement of A, bulge/earthquake the
curve inside the triangles tangent to 952.

@ Obtain a sequence of piecewise conics converging to the limit curve.
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A domain in RP? covering a closed surface

N~

AN AN

AN /

oe—
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terated bulging of convex domains in RPP?: Speculation
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terated bulging of convex domains in RPP?: Speculation

o If Q covers a closed convex RP2-surface with x < 0, then 0Q is
obtained from a conic by iterated bulgings and earthquakes.

0 Surface group representations / 29



terated bulging of convex domains in RPP?: Speculation

o If Q covers a closed convex RP2-surface with x < 0, then 0Q is
obtained from a conic by iterated bulgings and earthquakes.

o Is every properly convex domain Q C RP? with strictly convex C1
boundary obtained by iterated bulging-earthquaking?

0 Surface group representations / 29



terated bulging of convex domains in RPP?: Speculation

o If Q covers a closed convex RP2-surface with x < 0, then 0Q is
obtained from a conic by iterated bulgings and earthquakes.

o Is every properly convex domain Q C RP? with strictly convex C1
boundary obtained by iterated bulging-earthquaking?

@ Thurston proved that any two marked hyperbolic structures on ¥ can
be related by (left)-earthquake along a unique measured geodesic
lamination. Generalize this to convex RP2-structures.
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