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Colloque de mathématiques de Montréal
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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the
study of properties of an abstract space X which are invariant under a
transitive group G of transformations of X .
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ, ∃g ∈ G such that

g ◦ ψα = ψβ..

Local (G ,X )-geometry independent of patch.
(Ehresmann 1936): Geometric manifold M modeled on X .
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Classfication of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).

Example: The 2-sphere does not admit Euclidean-geometry structure:
6 ∃ metrically accurate world atlas.

Example: The 2-torus admits a rich moduli space of
Euclidean-geometry structures.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.

For example, the projective geometry of the interior of a quadric Ω is
hyperbolic geometry.
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The hyperbolic distance is defined by cross-ratios:

d(x , y) = log[A, x , y ,B ]

() Surface group representations
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/ 29



Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RP
n-structures: Ω ⊂ RP

n convex domain.

For example, the projective geometry of the interior of a quadric Ω is
hyperbolic geometry.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

y

B

A

x

The hyperbolic distance is defined by cross-ratios:

d(x , y) = log[A, x , y ,B ]

() Surface group representations
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Example: A projective tiling by equilateral 60o-triangles

This tesselation of the open triangular region is equivalent to the tiling of
the Euclidean plane by equilateral triangles.
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Example: A projective deformation of a tiling of the

hyperbolic plane by (60o,60o,45o)-triangles.

Both domains are tiled by triangles, invariant under a Coxeter group
Γ(3, 3, 4). The first domain is bounded by a conic and enjoys hyperbolic
geometry. The second domain is bounded by C 1+α-convex curve where
0 < α < 1.
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Example: A hyperbolic structure on a surface of genus two

Identify sides of an octagon to form a closed genus two surface.

 
a1

b1

a2

b2

���
�

a1b1

a2
b2

Realize these identifications isometrically for a regular 45o -octagon.
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f
−→ M where M is a

(G ,X )-manifold.

Marked (G ,X )-structures (fi ,Mi) are isotopic ⇐⇒ ∃ isomorphism

M1
φ
−→ M2 with φ ◦ f1 ' f2.

Define the deformation space

D(G ,X )(Σ) :=

{

Marked (G ,X )-structures on Σ

}

/Isotopy

η ∈ Diff(Σ) acts on marked (G ,X )-structures: (f ,M) 7−→ (f ◦ η,M).

Mapping class group

Mod(Σ) := π0

(

Diff(Σ)
)

acts on D(G ,X )(Σ).
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety.

Evaluation on the generators

Hom(π,G ) −→ G n

ρ 7−→
(

ρ(X1), . . . , ρ(Xn)
)

embeds Hom(π,G ) onto an algebraic subset of GL(N,R)N .

Structure is {X1, . . . ,Xn}-independent.

Classical topology (and Zariski topology).
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/ 29



Natural symmetries

Hom(π,G ) admits an action of Aut(π) × Aut(G ):

π
φ−1

−−→ π
ρ
−→ G

α
−→ G

where (φ, α) ∈ Aut(π) × Aut(G ), ρ ∈ Hom(π,G ).

Preserves the algebraic structure.

The quotient

Hom(π,G )/G := Hom(π,G )/
(

{1} × Inn(G )
)

under the subgroup

{1} × Inn(G ) ⊂ Aut(π) × Aut(G )

is the space of equivalence classes of flat connections on G -bundles
over any space with fundamental group π.

Inherits an action of

Out(π) := Aut(π)/Inn(π).

() Surface group representations
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under the subgroup

{1} × Inn(G ) ⊂ Aut(π) × Aut(G )

is the space of equivalence classes of flat connections on G -bundles
over any space with fundamental group π.

Inherits an action of

Out(π) := Aut(π)/Inn(π).

() Surface group representations
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Well-defined up to transformations in G .

Holonomy defines a mapping

D(G ,X )(Σ)
hol
−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)

(Thurston): The mapping hol is a local homeomorphism.

For quotient structures, hol is an embedding.

() Surface group representations
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Examples: Hyperbolic structures

Hyperbolic geometry: When X = H2 and G = Isom(H2), the
deformation space D(G ,X )(Σ) identifies with the Fricke-Teichmüller
space F(Σ) of Σ.

Identifies with Teichmüller space (marked conformal structures via
Uniformization Theorem.

hol embeds F(Σ) as a connected component of Hom(π,G )/G ).

F(Σ) ≈ R
6g−6 and Mod(Σ) acts properly discretely.

() Surface group representations
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Example: CP
1-structures

When X = CP
1 and G = PGL(2,C), Poincaré identified D(G ,X )(Σ)

with an affine bundle over F(Σ) whose fiber over a Riemann surface R

is the vector space H0(R ,K 2) of holomorphic quadratic differentials.

Thus D(G ,X )(Σ) ≈ R
12g−12 and Mod(Σ) acts properly discretely.

D(G ,X )(Σ) contains the space of quasi-Fuchsian representations.

() Surface group representations
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Example: RP
2-structures

When X = RP
2 and G = PGL(3,R), the deformation space

D(G ,X )(Σ) is a vector bundle over F(Σ) whose fiber over a Riemann
surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials (Labourie, Loftin)

For any R-split semisimple G , Hitchin found a contractible
component containing F(Σ).

More recently, Labourie showed all representations in this component
are discrete embeddings and that Mod(Σ) acts properly discretely.

Markedly different from CP
1-structures, where the holonomy

representations may not be discrete embeddings and hol is very
complicated.

() Surface group representations
Colloque de mathématiques de Montréal CRM/ISM 14 September 2007 16
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Character variety

Even though G acts algebraically on Hom(π,G ), the quotient
Hom(π,G )/G ) is not algebraic.

The GIT quotient Hom(π,G )//G is an Out(π)-invariant affine
algebraic variety.

Coordinate ring is the invariant subring

C[Hom(π,G )//G ] = C[Hom(π,G )]G ⊂ C[Hom(π,G )].

Examples are functions fα, associated to:

A conjugacy class [α], where α ∈ π;

An Inn(G )-invariant function G
f
−→ R.

() Surface group representations
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Character functions fα on representation varieties

Conjugacy class of α ∈ π corresponds to free homotopy class of
closed oriented loop α ⊂ Σ.

Invariant function G
f
−→ R =⇒ Function fα on Hom(π,G )/G :

Hom(π,G )/G
fα−→ R

[ρ] 7−→ f
(

ρ(α)
)

Example: Trace GL(n,R)
tr
−→ R

Another example: Displacement length

`(A) := min
x∈H2

d
(

x ,A(x)
)

tr(A) = ±2 cosh
(

`(A)/2
)

if A hyperbolic

On F(Σ), `α associates to a marked hyperbolic surface Σ ≈ M length
of the unique closed geodesic homotopic to α in M.

() Surface group representations
Colloque de mathématiques de Montréal CRM/ISM 14 September 2007 18
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Hamiltonian twist flows on Hom(π, G )

The Hamiltonian vector field Ham(fα) associated to f and α assigns
to a representation ρ in Hom(π,G ) a tangent vector

Ham(fα)[ρ] ∈ T[ρ]Hom(π,G )/G = H1(Σ, gAdρ).

It is represented by the (Poincaré dual) cycle-with-coefficient
supported on α and with coefficient

F (ρ(α)) ∈ gAdρ.

() Surface group representations
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The one-parameter subgroup associated to an invariant

function

Invariant function
G

f
−→ R

and A ∈ G =⇒ one-parameter subgroup

ζ(t) = exp
(

tF (A)
)

∈ G ,

where F (A) ∈ g.

Centralizes A:
ζ(t)Aζ−1 = A

F (A) is defined by duality:

df (A) ∈ T ∗

AG ∼= g∗
B
∼= g

() Surface group representations
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Generalized twist deformations

When α is a simple closed curve, then a flow Φt on Hom(π,G ) exists,
which covers the (local) flow of the Hamiltonian vector field Ham(fα).

Example: α nonseparating curve A1 in

π = 〈A1,B1, . . . ,Ag ,Bg | A1B1A
−1
1 B−1

1 . . . ,AgBgA−1
g B−1

g = 1〉

this flow has the following description in terms of generators:.

Φt(γ) = ρ(γ) is constant if γ is either Ai for 1 ≤ i ≤ g or Bi for
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Some earthquake deformations in the universal covering

A deformation of a hyperbolic structure supported on a closed geodesic.
The developing map changes discontinuously, remaining equivariant under
a varying family of holonomy representations.
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Relation with the Mod(Σ)-action

For G = SU(2), the equivalence relation generated by Dehn twists
about simple closed curves is measurably equal to that given by twist
flows (modulo Lebesgue nullsets).

Because generically, the (discrete) Dehn twist is an irrational rotation
of the circle (the trajectory of the twist flow).

Since the Hamiltonian potentials (traces of simple loops) generate the
character ring, their Hamiltonian flows generate a transitive action.

Since the Dehn twists generate Mod(Σ), the action is ergodic on each
connected component.

Ergodic on each component when G is compact (G, Pickrell-Xia).

() Surface group representations
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/ 29



Relation with the Mod(Σ)-action

For G = SU(2), the equivalence relation generated by Dehn twists
about simple closed curves is measurably equal to that given by twist
flows (modulo Lebesgue nullsets).

Because generically, the (discrete) Dehn twist is an irrational rotation
of the circle (the trajectory of the twist flow).

Since the Hamiltonian potentials (traces of simple loops) generate the
character ring, their Hamiltonian flows generate a transitive action.

Since the Dehn twists generate Mod(Σ), the action is ergodic on each
connected component.

Ergodic on each component when G is compact (G, Pickrell-Xia).

() Surface group representations
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Twist and bulging deformations for RP
2-structures

When G = SL(3,R), the generic centralizer is conjugate to the
subgroup of diagonal matrices





λ1 0 0
0 λ2 0
0 0 λ3





which has two one-parameter subgroups:





et 0 0
0 1 0
0 0 e−t



 , e−t/3





1 0 0
0 et 0
0 0 1





() Surface group representations
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Bulging conics along a triangle in RP
2

If Ω is the interior of an invariant conic, the the first one-parameter
subgroup preserves Ω. The second one-parameter changes Ω by bulging it
along a triangle tangent to ∂Ω.

() Surface group representations
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Bulging domains in RP
2

Start with a strictly convex C 1 domain Ω (like a disc). Each geodesic
embeds in a triangle tangent to ∂Ω.

Choose disjoint lines Λ ⊂ Ω, with instructions how to deform along Λ:
(for each line λ ⊂ Λ, a one-parameter subgroup preserving λ.

Fixing a basepoint in the complement of Λ, bulge/earthquake the
curve inside the triangles tangent to ∂Ω.

Obtain a sequence of piecewise conics converging to the limit curve.

() Surface group representations
Colloque de mathématiques de Montréal CRM/ISM 14 September 2007 26

/ 29



Bulging domains in RP
2

Start with a strictly convex C 1 domain Ω (like a disc). Each geodesic
embeds in a triangle tangent to ∂Ω.

Choose disjoint lines Λ ⊂ Ω, with instructions how to deform along Λ:
(for each line λ ⊂ Λ, a one-parameter subgroup preserving λ.

Fixing a basepoint in the complement of Λ, bulge/earthquake the
curve inside the triangles tangent to ∂Ω.

Obtain a sequence of piecewise conics converging to the limit curve.

() Surface group representations
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A domain in RP
2 covering a closed surface
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Iterated bulging of convex domains in RP
2: Speculation

If Ω covers a closed convex RP
2-surface with χ < 0, then ∂Ω is

obtained from a conic by iterated bulgings and earthquakes.

Is every properly convex domain Ω ⊂ RP
2 with strictly convex C 1

boundary obtained by iterated bulging-earthquaking?

Thurston proved that any two marked hyperbolic structures on Σ can
be related by (left)-earthquake along a unique measured geodesic

lamination. Generalize this to convex RP
2-structures.

() Surface group representations
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