1. Let $\mathbf{F}=\left(2 x z+y^{2}\right) \mathbf{i}+\left(z^{2}+2 x y\right) \mathbf{j}+\left(2 y z+x^{2}+1\right) \mathbf{k}$.
(a) Show that F is conservative and find a function f such that $\mathbf{F}=\nabla f$.
(b) Compute $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ where C is the curve

$$
x=t^{5}, \quad y=t e^{(1-t)} \quad z=1+\cos ^{3} \pi t / 2, \quad 0 \leq t \leq 1
$$

2. Compute $\int_{C} x y d x+x^{2} d y$ where C is the boundary of the part of the disk $x^{2}+y^{2} \leq 1$ which lies in the first quadrant, oriented counterclockwise.
3. Use Stokes's Theorem to compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where

$$
\mathbf{F}(x, y, z)=z^{2} \mathbf{i}+x^{2} \mathbf{j}+y^{2} \mathbf{k}
$$

C is the triangle with vertices $(0,0,0),(1,0,0)$ and $(0,1,1)$ oriented counterclockwise as viewed from above. (Hint: The triangle is contained in the plane $z=y$.)
4. Compute $\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} d S$ where Σ is the boundary of the solid region

$$
D=\left\{(x, y, z): x^{2}+y^{2} \leq 4,-1 \leq z \leq 3\right\}
$$

$\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{2} \mathbf{k}$, and \mathbf{n} points outward.

