The Use of Calculators Is Not Permitted On This Exam

1. Let $w=f(x, y, z)$ be a differentiable function. Suppose that $f(8,-4,1)=5$ and $\nabla f(8,-4,1)=\mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$.
(a) Find the directional derivative of f at $(8,-4,1)$ in the direction toward the origin.
(b) In what direction is the directional derivative of f at $(8,-4,1)$ a maximum and what is the maximum value of the directional derivative?
(c) Find an equation of the tangent plane to the level surface $f(x, y, z)=5$ at $(8,-4,1)$.
(d) If $x(t)=8+2 t, y(t)=3 t-4, z(t)=e^{t}$, what is $\frac{d w}{d t}$ at $t=0$?
2. If $z=e^{-a t} \cos a x$, show that

$$
\frac{\partial^{2} z}{\partial x^{2}}=a \frac{\partial z}{\partial t}
$$

3. Use differentials to obtain an approximate value of $(\sqrt{15}+\sqrt{99})^{2}$. The exact value is 191.07139547.
4. Let

$$
f(x, y)=3 x^{2}-6 x y+y^{3}-24 y
$$

Find all critical points of f. Determine whether each critical point yields a relative maximum, a relative minimum or a saddle point.
5. The Ace Widget Company has determined that x units of labor and y units of capital can produce $f(x, y)=60 x^{3 / 4} y^{1 / 4}$ widgets. Also, suppose that each unit of labor costs $\$ 100$ while each unit of capital costs $\$ 200$. Assume that $\$ 40,000$ is available to spend on production. How many units of labor and how many units of capital should be utilized in order to maximize production ?

