1. Let

$$
I=\int_{0}^{2} \int_{x / 2}^{1} x e^{y^{3}} d y d x
$$

Sketch the region of integration, reverse the order of integration and evaluate I.
2. Find the surface area S of the portion of the surface $z=x y$ which lies inside the cylinder $x^{2}+y^{2}=9$.
3. Compute by triple integration the volume V of the region D that is bounded by the parabolic cylinder $x=y^{2}$ and the planes $z=0, y=0$ and $x+z=1$.
4. Find the mass of the solid lying between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ if the density at each point is proportional to the reciprocal of the distance from the center of the spheres. (Call the constant of proportionality k.)
5. Compute $\iint_{R} x d A$ where R is the region bounded by $x y=1, x y=2, x(1-y)=1$ and $x(1-y)=3$ by making the change of variables $x=u+v, y=v /(u+v)$.

