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This paper concerns the random fluctuation theory of a one di-
mensional elliptic equation with highly oscillatory random coeffi-
cient. Theoretical studies show that the rescaled random corrector
converges in distribution to a stochastic integral with respect to
Brownian motion when the random coefficient has short-range cor-
relation. When the random coefficient has long-range correlation,
it was shown for a large class of random processes that the ran-
dom corrector converged to a stochastic integral with respect to
fractional Brownian motion. In this paper, we construct a class of
random coefficients for which the random corrector converges to a
non-Gaussian limit. More precisely, for this class of random coeffi-
cients with long-range correlation, the properly rescaled corrector
converges in distribution to a stochastic integral with respect to a
Rosenblatt process.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The equation of interest in this paper is the following one dimensional elliptic equation with highly
oscillatory coefficients:
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dx
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uε(x,ω)

)
= f (x), x ∈ (0,1), (1.1)
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where the coefficient a(x,ω) is a stationary, bounded with bounded inverse, random potential. We
are interested in the limiting behavior of the solution uε(x,ω) when ε → 0 and more precisely in the
size of the random fluctuations of uε(x,ω) and of their limiting distribution after proper rescaling.

Homogenization theory has been extensively studied in both periodic and random settings; see for
instance [4,6,9–11,15]. In the random setting, homogenization theory replace the random medium by
a properly averaged effective, deterministic, medium. It is well known that under certain assumptions
of the random media uε converges to the deterministic, homogenized solution ū(x) as ε → 0. Fewer
results are available concerning the theory of random fluctuations and in particular the theory of the
random corrector uε − ū. In the one dimensional setting, it has been shown that the property of the
corrector strongly depends on the correlation property of the random potential. Using the explicit
expressions of the solution to (1.1), it has been shown in [6] that when the random potential had
short-range correlation and satisfies certain mixing properties, the corrector’s amplitude is of order√

ε and, after rescaling, converges in distribution to a stochastic integral with respect to Brownian
motion. In [3], the result has been extended to a large class of random potential with long-range
correlation, where the corrector’s amplitude is of order εα/2, with α ∈ (0,1) characterizing the decay
of the correlation function of the random coefficient. Furthermore, the weak convergence limit of the
rescaled corrector is then a stochastic integral with respect to fractional Brownian motion.

No theories of correctors are available for elliptic equations of the form (1.1) in higher spatial di-
mension; see [15] for estimates of the size of the random fluctuations and [8] for the optimal variance
estimate in the discrete setting. Similar results to the ones described above have been obtained in
higher dimensions for Schrödinger-type equations with random potential. In [1], homogenization and
corrector theory has been developed for a large class of second order elliptic equations with short-
range correlated potentials, and it has been generalized into the long-range correlation case in [2].
In all of these cases, the limiting distributions of the rescaled correctors are Gaussian random fields,
which admit convenient representations as a stochastic integral with respect to Brownian motion or
fractional Brownian motion.

In this paper, we focus on (1.1) and follow the framework in [3] to obtain non-Gaussian limits
for the random fluctuations. We construct a class of random potential with long-range correlation for
which the limiting distribution of the rescaled corrector is no longer Gaussian as ε → 0, but rather
the so-called Rosenblatt distribution, which is an element in the second order Wiener chaos. The
corrector’s amplitude is εα for α ∈ (0,1/2). Our results are closely related to classical examples of
non-central limits in probability theory; see [13,7,12]. The approach is based on the explicit expres-
sion for the solution to (1.1) and a careful analysis of the oscillatory integral.

The paper is organized as follows. In Section 2, we state the main theorem of the paper and com-
pare it with previously established results. In Section 3, we give a brief introduction to the Rosenblatt
process and the corresponding stochastic integral. In Section 4, we prove some key results concerning
the weak convergence of oscillatory integral. In Section 5, we prove the main theorem and briefly
discuss possible extensions.

2. Main results

We formulate the problem as follows:

⎧⎨
⎩− d

dx

(
a

(
x

ε
,ω

)
d

dx
uε(x,ω)

)
= f (x), x ∈ (0,1), ω ∈ Ω,

uε(0,ω) = 0, uε(1,ω) = b

(2.1)

where a(x,ω) ∈ [a0,a−1
0 ] for some positive a0, and is a stationary ergodic random process associated

with the probability space (Ω,F ,P). f (x) ∈ C[0,1] and b ∈ R. Classical theory of elliptic equations
shows the existence of a unique solution u(.,ω) ∈ H1(0,1) P-a.s.

It was shown that as the scale of the micro-structure ε → 0, the solution uε(x,ω) to (2.1) con-
verges P-a.s. to the deterministic solution ū(x) of the following equation:
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⎧⎨
⎩− d

dx

(
a∗ d

dx
ū(x)

)
= f (x), x ∈ (0,1),

ū(0) = 0, ū(1) = b

(2.2)

where a∗ is the harmonic mean of a(x,ω), i.e., a∗ = (E{a−1(0, .)})−1. See e.g. [9–11].
The analysis of the random corrector is based on the explicit expression for the solutions to (2.1)

and (2.2). If we denote aε(x) = a( x
ε ) and F (x) = ∫ x

0 f (y)dy, we have:

uε(x,ω) = cε(ω)

x∫
0

1

aε(y,ω)
dy −

x∫
0

F (y)

aε(y,ω)
dy, cε(ω) = b + ∫ 1

0
F (y)

aε(y,ω)
dy∫ 1

0
1

aε(y,ω)
dy

, (2.3)

ū(x) = c∗ x

a∗ −
x∫

0

F (y)

a∗ dy, c∗ = a∗b +
1∫

0

F (y)dy. (2.4)

We note that uε(x,ω) − ū(x) contains oscillatory integrals of the form

∫
R

(
1

aε(y,ω)
− 1

a∗

)
h(y)dy (2.5)

for some function h(y). Next we make some assumptions on the random process aε(y,ω)−1 − (a∗)−1.

2.1. Assumptions on the random process

Our goal is to analyze the statistical property of uε − ū as ε → 0 for a large class of random
process a(x,ω), and show the existence of a non-Gaussian limiting corrector. To do this, we make the
following assumptions on a(x,ω). Let

q(x,ω) = 1

a(x,ω)
− 1

a∗ (2.6)

and assume that

q(x,ω) = Φ
(

g(x,ω)
)

(2.7)

for some function Φ and a random process g(x,ω) constructed explicitly as:

g(x) = ξ[x+U ] (2.8)

where {ξk, k ∈ Z} is a centered stationary Gaussian sequence with unit variance, and its auto-
correlation function r(k) = E{ξ0ξk} ∼ κg |k|−α for some κg > 0 and α ∈ (0, 1

2 ). U is uniformly dis-
tributed on [0,1] and independent of {ξk, k ∈ Z}. Through some elementary computation, we can
show that g(x) defined in (2.8) is a centered stationary Gaussian process with unit variance and
long-range correlation: R g(x) = E{g(0)g(x)} ∼ κg |x|−α .

Recall the definition of Hermite polynomials:

Hn(x) = (−1)n exp

(
x2

2

)
dn

dxn
exp

(
− x2

2

)
, (2.9)
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assume E{Φ(g(x))2} < ∞, and define Vn = E{Hn(g(x))Φ(g(x))}, then we make the following key
assumptions on Φ(x):

V 0 = V 1 = 0, V 2 �= 0. (2.10)

The smallest integer n such that Vn �= 0 is called the Hermite rank of Φ . So (2.10) states that the
Hermite rank of Φ is 2. We will see later that V 1 = 0 is the key condition for the existence of a
non-Gaussian corrector. When V 1 �= 0, by Theorem 2.3 below, the rescaled corrector converges in
distribution to some stochastic integral with respect to fractional Brownian motion.

The condition V 0 = 0 ensures that q(x,ω) is centered, and we have the following lemma concern-
ing the correlation property of q(x,ω). For simplicity, we denote it as q(x) from now on.

Lemma 2.1. Let R(x) = E{q(0)q(x)}, then

R(x) ∼ κ |x|−2α (2.11)

where κ = V 2
2 κ2

g
2 .

Proof. We have R(x) = E{Φ(g(0))Φ(g(x))}, and by Hermite expansion

Φ
(

g(x)
) =

∞∑
n=0

Vn

n! Hn
(

g(x)
)
. (2.12)

Therefore,

E
{
Φ

(
g(0)

)
Φ

(
g(x)

)} =
∞∑

n=0

V 2
n

(n!)2
E

{
Hn

(
g(0)

)
Hn

(
g(x)

)} =
∞∑

n=0

V 2
n

n! R g(x)n. (2.13)

Since V 0 = V 1 = 0, we have

E
{
Φ

(
g(0)

)
Φ

(
g(x)

)} = R g(x)2

( ∞∑
n=2

V 2
n

n! R g(x)n−2

)
. (2.14)

Because
∑∞

n=0
V 2

n
n! < ∞ by assumption on Φ and R g(x) ∼ κg |x|−α , we verify that

R(x) = E
{
Φ

(
g(0)

)
Φ

(
g(x)

)} ∼ V 2
2κ2

g

2
|x|−2α. (2.15)

The proof is complete. �
Since we assume α ∈ (0, 1

2 ), then R(x) /∈ L1(R) so that q(x) has long-range correlation and we have
|R(x)| � M|x|−2α for some constant M .
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2.2. Main theorem

Now we state the main theorem and compare it with the previous results.

Theorem 2.2. Let uε and ū be the solutions in (2.3) and (2.4) and let q(x,ω) be a centered stationary random
process of the form (2.7) with the Hermite rank of Φ being equal to 2. Then uε − ū is a random process in
C([0,1]), and we have the following convergence in distribution in the space of continuous functions C([0,1]):

uε(x) − ū(x)

εα
distribution−−−−−−→

ε→0
Ū (x) (2.16)

where

Ū (x) = V 2κg

2

∫
R

F (x, y)dR D(y), (2.17)

F (x, y) = c∗1[0,x](y) − F (y)1[0,x](y) + x

(
F (y) −

1∫
0

F (z)dz − a∗b

)
1[0,1](y). (2.18)

Here R D(y) is a Rosenblatt process with D = α.

It should be contrasted with the convergence results for processes with long-range correlation and
the Hermite rank equals to 1 [3] or with short-range correlation [6].

Theorem 2.3. Let uε and ū be the solutions in (2.3) and (2.4), and let q(x,ω) be a centered stationary random
process of the form (2.7) with the Hermite rank of Φ being equal to 1. Then uε − ū is a random process in
C([0,1]), and we have the following convergence in distribution in the space of continuous functions C([0,1]):

uε(x) − ū(x)

εα/2
distribution−−−−−−→

ε→0
Ū (x) (2.19)

where

Ū (x) =
√

κg V 2
1

H(2H − 1)

∫
R

F (x, y)dB H (y). (2.20)

Here F (x, y) is given by (2.18) and B H (y) is a fractional Brownian motion with Hurst index H = 1 − α
2 .

Remark 2.4. In Theorem 2.3, we can assume α ∈ (0,1) instead of α ∈ (0, 1
2 ) in Theorem 2.2.

Theorem 2.5. Let uε and ū be the solutions in (2.3) and (2.4), and let q(x,ω) be a centered stationary random
process of the form (2.7). If the correlation function R g of g is integrable (instead of being equivalent to |x|−α

at infinity), then R is also integrable. The corrector uε − ū is a random process in C([0,1]) and we have the
following convergence in distribution in the space of continuous functions C([0,1]):

uε(x) − ū(x)√
ε

distribution−−−−−−→
ε→0

Ū (x) (2.21)

where
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Ū (x) =
(

2

∞∫
0

R(τ )dτ

) 1
2 ∫
R

F (x, y)dB(y). (2.22)

Here F (x, y) is given by (2.18) and B(y) is a standard Brownian motion.

We can see from the above theorems that the size of the corrector not only depends on the
correlation property of the random process q(x) but also the Hermite rank of Φ , and the limiting
distribution of the properly rescaled corrector can be non-Gaussian.

The rest of this paper is devoted to the proof of Theorem 2.2. To do this, we first give a brief
introduction of the Rosenblatt process and the stochastic integral with respect to it.

3. Rosenblatt process

In this section, we briefly recall some general facts about the Rosenblatt process and the stochastic
integral with respect to it [14].

3.1. Non-central limit theorem and Wiener–Itô integral representation

The following theorem gives rise to the Rosenblatt process [12].

Theorem 3.1. Assume Xn are centered stationary Gaussian sequence with unit variance r(k) = E{X0 Xk} ∼
k−D L(k), where D ∈ (0,1/2) and L(k) is a slowly varying function. Define

ZN,2(t) = 1

dN

[Nt]∑
i=1

(
X2

i − 1
)

with dN ∼ N1−D L(N) as N → ∞.
Then the finite dimensional distributions of Z N,2(t) converge to the corresponding finite dimensional dis-

tributions of the Rosenblatt process R D(t).

By Theorem 3.1, we have the characteristic function of the Rosenblatt distribution R D(1) in a small
neighborhood of the origin:

exp
(
iθ R D(1)

) = exp

{
1

2

∞∑
n=2

[
(2iθ)n

n

∫
[0,1]n

1

|x2 − x1|D |x3 − x2|D · · · |x1 − xn|D
dx

]}
. (3.1)

The Rosenblatt process has the following representation as a Wiener–Itô integral:

R D(t) = c(D)

∫
R2

t∫
0

(s − y1)
− 1+D

2+ (s − y2)
− 1+D

2+ ds dB(y1)dB(y2). (3.2)

The constant c(D) is chosen such that E{R D(1)2} = 1. From (3.2), we see that the Rosenblatt process
lives in the second order Wiener chaos and is a self-similar process with stationary increments. The
Hurst index H = 1 − D .
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3.2. Stochastic integral with respect to Rosenblatt process

The representation (3.2) is not very convenient to define stochastic integrals. Recall that for fraction
Brownian motion, we have:

B H
t =

t∫
0

K H (t, s)dB(s) (3.3)

with (Bt , t ∈ [0, T ]) a standard Brownian motion and

K H (t, s) = cH s
1
2 −H

t∫
s

(u − s)H− 3
2 uH− 1

2 du (3.4)

where t > s and

cH =
(

H(2H − 1)

β(2 − 2H, H − 1
2 )

) 1
2

. (3.5)

There are similar results for Rosenblatt process:

Proposition 3.2. Let K be the kernel in (3.4) and (R D(t))t∈[0,T ] a Rosenblatt process with Hurst index H =
1 − D. Then it holds that

R D(t) = d(H)

t∫
0

t∫
0

[ t∫
y1∨y2

∂ K H ′

∂u
(u, y1)

∂ K H ′

∂u
(u, y2)du

]
dB(y1)dB(y2) (3.6)

where (Bt , t ∈ [0, T ]) is a standard Brownian motion, H ′ = H+1
2 , and

d(H) = 1

H + 1

(
H

2(2H − 1)

)− 1
2

. (3.7)

By the representation (3.6), the stochastic integral with respect to Rosenblatt process can be de-
fined as follows. We first rewrite

R D(t) =
T∫

0

T∫
0

I(1[0,t])(y1, y2)dB(y1)dB(y2) (3.8)

where the operator I is defined on the set of functions f : [0, T ] → R, takes values in the set of
functions g : [0, T ]2 →R

2 and it is given by

I( f )(y1, y2) = d(H)

T∫
y1∨y2

f (u)
∂ K H ′

∂u
(u, y1)

∂ K H ′

∂u
(u, y2)du. (3.9)

If f is an element of the set E of step functions on [0, T ] of the form
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f =
n−1∑
i=0

ai1(ti ,ti+1], 0 = t0 < t1 < · · · < tn = T , (3.10)

it is natural to define its stochastic integral with respect to R D(t) as

T∫
0

f (t)dR D(t) =
n−1∑
i=0

ai
(

R D(ti+1) − R D(ti)
) =

T∫
0

T∫
0

I( f )(y1, y2)dB(y1)dB(y2). (3.11)

Let H be the set of deterministic functions f such that

‖ f ‖2
H = H(2H − 1)

T∫
0

T∫
0

f (u) f (v)|u − v|2H−2 du dv < ∞. (3.12)

It can be shown that

‖ f ‖2
H = 2

T∫
0

T∫
0

I( f )(y1, y2)
2 dy1 dy2 = 2E

{( T∫
0

f (t)dR D(t)

)2}
. (3.13)

Therefore the mapping

f →
T∫

0

f (t)dR D(t) (3.14)

defines an isometry from E to L2(Ω) and it can be extended by continuity to an isometry from H to
L2(Ω) because E is dense in H. We call this extension the Wiener integral of f ∈ H with respect to
R D(t).

4. Analysis of oscillatory integrals

From (2.3) and (2.4), we can see that the rescaled corrector uε−ū
εα contains oscillatory integrals of

the form:

∫
R

1

εα
q

(
x

ε

)
h(x)dx (4.1)

for some compactly supported h(x). The main goal of this section is to prove the following results:

Proposition 4.1. Assume that h(x) is compactly supported in [0,∞) and continuous, then

∫
R

1

εα

(
g2

(
x

ε

)
− 1

)
h(x)dx distribution−−−−−−→

ε→0
κg

∫
R

h(x)dR D(x) (4.2)

where R D(x) is the Rosenblatt process with D = α.
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Proof. Since g(x) = ξ[x+U ] , the LHS of (4.2) can be written as

∫
R

1

εα

[
g2

(
x

ε

)
− 1

]
h(x)dx =

∞∑
k=−∞

Ak,ε

(
ξ2

k − 1
)

(4.3)

where

Ak,ε =
ε(k+1−U )∫
ε(k−U )

h(x)

εα
dx. (4.4)

Since h(x) is compactly supported, the sum contains finitely many terms. We compute the conditional
characteristic function of (4.3) as follows:

cε(θ) = E

{
exp

(
iθ

∫
R

1

εα

(
g

(
x

ε

)2

− 1

)
h(x)dx

) ∣∣∣ U

}

= E

{
exp

(
iθ

∞∑
k=−∞

Ak,ε

(
ξ2

k − 1
)) ∣∣∣ U

}
. (4.5)

Freeze U , then Ak,ε are constants. If we assume k = m, . . . ,n and n − m + 1 = N , then we have

cε(θ) = 1

(2π)
N
2 |ΣN | 1

2

∫
RN

exp

(
iθ

n∑
k=m

Ak,ε

(
x2

k − 1
))

exp

(
−1

2
x′Σ−1

N x
)

dx

= |ΣN |− 1
2
∣∣Σ−1

N − 2AN(ε, θ)
∣∣− 1

2 exp
(−Tr

(
AN(ε, θ)

))
= ∣∣IN − 2ΣN AN(ε, θ)

∣∣− 1
2 exp

(−Tr
(

AN(ε, θ)
))

(4.6)

where ΣN is the covariance matrix of (ξm, . . . , ξn), and AN (ε, θ) is the N × N diagonal matrix where
the diagonals are iθ Ak,ε , k = m, . . . ,n.

Let λk,ε(θ), k = 1, . . . , N, be the eigenvalues of ΣN AN (ε, θ), then we claim that there exists δ > 0,
such that if |θ | < δ, we have

cε(θ) = exp

(
−

N∑
k=1

λk,ε(θ)

)
N∏

k=1

(
1 − 2λk,ε(θ)

)− 1
2

= exp

(
−

N∑
k=1

(
λk,ε(θ) + 1

2
ln

(
1 − 2λk,ε(θ)

)))
= exp

(
1

2

∞∑
n=2

2n

n

N∑
k=1

λk,ε(θ)n

)
. (4.7)

To see this, we only need to show that when |θ | < δ, then for every N , we have

∞∑ 2n

n

N∑∣∣λk,ε(θ)
∣∣n

< ∞. (4.8)

n=2 k=1
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Actually, |λk,ε(θ)| � M|θ |ε1−α
√∑N

i, j=1 |r(i − j)|2 for some constant M . Since Nε converges as ε → 0,

and by Lemma 3.1 in [12],
∑N

i, j=1 |r(i − j)|2 ∼ O (N2−2α), the claim is proved.

Next, we show that as ε → 0,
∑N

k=1 λk,ε(θ)n converges for each n � 2.
Since λk,ε(θ) are the eigenvalues of ΣN AN(ε, θ), we have

N∑
k=1

λk,ε(θ)n = Tr
((

ΣN AN(ε, θ)
)n)

. (4.9)

If we denote (ΣN AN (ε, θ))i j = ρi j , we can write the RHS of (4.9) as follows:

Tr
((

ΣN AN(ε, θ)
)n) =

N∑
i1=1

N∑
i2=1

· · ·
N∑

in=1

ρi1 i2ρi2i3 · · ·ρin−1inρini1 . (4.10)

It is straightforward to check that

ρkj = r
(| j − k|)iθ A j+m−1,ε. (4.11)

By stationarity, we have

Tr
((

ΣN AN(ε, θ)
)n)

= (iθ)n
∑

i1,...,in=m,...,n

Ai1,ε Ai2,ε · · · Ain,εr
(|i2 − i1|

)
r
(|i3 − i2|

) · · · r
(|i1 − in|

)
. (4.12)

By (4.4), we have

Ak,ε = 1

N1−α
(Nε)1−α 1

ε

ε(k+1−U )∫
ε(k−U )

h(x)dx := 1

N1−α
(Nε)1−α Bk,N (4.13)

where

Bk,N = 1

ε

ε(k+1−U )∫
ε(k−U )

h(x)dx, k = m, . . . ,n, (4.14)

is an approximation to h(x). Therefore,

Tr
((

ΣN AN(ε, θ)
)n)

= (iθ)n(Nε)n(1−α)
∑

i1,...,in=m,...,n

1

Nn
Bi1,N · · · Bin,Nr

(|i2 − i1|
)
Nα · · · r

(|i1 − in|
)
Nα. (4.15)

By assumption, r(k) ∼ κg |k|−α so that there exists some constant M independent of n and ε such that

∣∣Tr
((

ΣN AN(ε, θ)
)n)∣∣ � |θ |n Mn (4.16)
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and

Tr
((

ΣN AN(ε, θ)
)n) → (iθκg)

n
∫
Rn

h(x1)h(x2) · · ·h(xn)

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx1 · · ·dxn (4.17)

as ε → 0, where we have used the fact that h(x) is continuous. Therefore, if |θ | < δ, we have

cε(θ) → exp

(
1

2

∞∑
n=2

(2iθκg)
nCn

n

)
(4.18)

where

Cn =
∫
Rn

h(x1)h(x2) · · ·h(xn)

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx1 · · ·dxn. (4.19)

We have shown that the conditional characteristic function cε(θ) converges in a small neighbor-
hood of the origin, and we verify that

c0(z) = exp

(
1

2

∞∑
n=2

(2izκg)
nCn

n

)
(4.20)

is analytic when |z| < δ. Therefore, c0(z) agrees with a unique characteristic function for all real
values of z. We still denote the characteristic function as c0(z). Take expectation of cε(θ) in (4.5), by
the Dominated Convergence Theorem, we have

E

{
exp

(
iθ

∫
R

1

εα

(
g

(
x

ε

)2

− 1

)
h(x)dx

)}
→ c0(θ). (4.21)

Therefore, the random variable
∫
R

1
εα (g( x

ε )2 − 1)h(x)dx converges in distribution and we claim that
the limit is κg

∫
R

h(x)dR D(x). To see this, we only have to prove that the characteristic function of
κg

∫
R

h(x)dR D(x) agrees with c0(θ) when |θ | < δ.

Let hε(x) = ∑N
i=1 aε,i1(tεi−1,tεi ](x), 0 = tε0 < tε1 < · · · < tεN = T , be an approximation to h(x) in the

sense that

∥∥hε(x) − h(x)
∥∥
H → 0 (4.22)

as ε → 0. So
∫
R

hε(x)dR D(x) = ∑N
i=1 aε,i(R D(tεi ) − R D(tεi−1)). We claim that

exp

(
iθ

∫
R

hε(x)dR D(x)

)
= exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
Rn

hε(x1)hε(x2) · · ·hε(xn)

|x2 − x1|α|x3 − x2|α · · · |x1 − xn|α dx

)
(4.23)

when θ is sufficiently small.



1080 Y. Gu, G. Bal / J. Differential Equations 253 (2012) 1069–1087
To see this, we consider

∫
Rn

hε(x1)hε(x2) · · ·hε(xn)

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx

=
N∑

i1,...,in=1

[(
n∏

k=1

aε,ik

) tεi1∫
tεi1−1

· · ·
tεin∫

tεin−1

1

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx

]
. (4.24)

If we define θε,i = aε,i − aε,i+1 for i = 1, . . . , N − 1 and θε,N = aε,N , then we have aε,i = ∑N
k=i θε,k and

(4.24) can be rewritten as

∫
Rn

hε(x1)hε(x2) · · ·hε(xn)

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx

=
N∑

j1,..., jn=1

[(
n∏

k=1

θε, jk

) tεj1∫
0

· · ·
tεjn∫
0

1

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx

]
. (4.25)

On the other hand,

∫
R

hε(x)dR D(x) =
N∑

k=1

θε,k R D
(
tεk

)
. (4.26)

By Proposition 6.1 in [12], the characteristic function of
∫
R

hε(x)dR D(x) in a small neighborhood
of the origin is

exp

(
iθ

∫
R

hε(x)dR D(x)

)

= exp

{
1

2

∞∑
n=2

[
(2iθ)n

n

N∑
j1,..., jn=1

(
n∏

k=1

θε, jk

) tεj1∫
0

· · ·
tεjn∫
0

1

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx

]}
.

(4.27)

Therefore, (4.23) is proved.
As ε → 0,

exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
Rn

hε(x1)hε(x2) · · ·hε(xn)

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx

)

→ exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
n

h(x1)h(x2) · · ·h(xn)

|x2 − x1|α|x3 − x2|α · · · |x1 − xn|α dx

)
. (4.28)
R
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Since
∫
R

hε(x)dR D(x) → ∫
R

h(x)dR D(x) in L2(Ω) by the definition of stochastic integral with respect
to Rosenblatt process, we have

exp

(
iθ

∫
R

h(x)dR D(x)

)
= exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
Rn

h(x1)h(x2) · · ·h(xn)

|x2 − x1|α |x3 − x2|α · · · |x1 − xn|α dx

)
(4.29)

in a small neighborhood of the origin. This completes our proof. �
Proposition 4.2. Under the same assumption as in Proposition 4.1, we have

∫
R

1

εα
q

(
x

ε

)
h(x)dx distribution−−−−−−→

ε→0

V 2κg

2

∫
R

h(x)dR D(x). (4.30)

Proof. By Hermite expansion,

q

(
x

ε

)
= Φ

(
g

(
x

ε

))
=

∞∑
n=2

Vn

n! Hn

(
g

(
x

ε

))
. (4.31)

We claim that

∫
R

1

εα

(
q

(
x

ε

)
− V 2

2

(
g

(
x

ε

)2

− 1

))
h(x)dx → 0 (4.32)

in probability.
Actually, we have

E

{(∫
R

1

εα

(
q

(
x

ε

)
− V 2

2

(
g

(
x

ε

)2

− 1

))
h(x)dx

)2}

=
∞∑

n=3

∫
R2

1

ε2α

V 2
n

n! R g

(
x − y

ε

)n

h(x)h(y)dx dy (4.33)

and

1

ε2α

∣∣∣∣
∫
R2

R g

(
x − y

ε

)n

h(x)h(y)dx dy

∣∣∣∣
� M

ε2α

∫
|x−y|<Mε

∣∣h(x)h(y)
∣∣dx dy + M

ε2α

∫
|x−y|>Mε

εnα

|x − y|nα

∣∣h(x)h(y)
∣∣dx dy (4.34)

for some constant M . Since α ∈ (0, 1
2 ) and n � 3, we show that the RHS of (4.34) is uniformly bounded

in n and converges to 0 as ε → 0.

Because
∑∞

n=3
V 2

n
n! < ∞, by the Dominated Convergence Theorem, the LHS of (4.33) converges to 0

as ε → 0. By Proposition 4.1,
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∫
R

1

εα

V 2

2

(
g

(
x

ε

)2

− 1

)
h(x)dx → V 2κg

2

∫
R

h(x)dR D(x) (4.35)

which completes the proof. �
Remark 4.3. Although we assume that h(x) is continuous in Propositions 4.1 and 4.2, we see from the
above proof that h(x) can be allowed to have finitely many jump discontinuities, and we will use this
fact later.

5. Proof of the main theorem

Recalling (2.3) and (2.4), we have

uε(x) − ū(x) = −
x∫

0

q

(
y

ε

)
F (y)dy + (

cε − c∗) x

a∗ + c∗
x∫

0

q

(
y

ε

)
dy + rε(x) (5.1)

where

rε(x) = (
cε − c∗) x∫

0

q

(
y

ε

)
dy (5.2)

and

cε − c∗ = a∗
1∫

0

(
F (y) −

1∫
0

F (z)dz − a∗b

)
q

(
y

ε

)
dy + ρε (5.3)

with ρε the remainder term.
Define

Uε(x) = −
x∫

0

q

(
y

ε

)
F (y)dy + (

cε − c∗ − ρε

) x

a∗ + c∗
x∫

0

q

(
y

ε

)
dy (5.4)

so that

uε(x) − ū(x) = Uε(x) + rε(x) + ρε
x

a∗ . (5.5)

The proof of Theorem 2.2 contains two steps. First, we prove the weak convergence of 1
εα Uε(x) as

a process in C([0,1]). Then we control the remainder term rε(x) + ρε
x

a∗ . We use the notation a � b
when there exists a constant M such that a � Mb.
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5.1. Weak convergence in C([0,1])

Rewrite

Uε(x) =
∫
R

(
c∗1[0,x](y) − F (y)1[0,x](y)

)
q

(
y

ε

)
dy

+
( 1∫

0

(
F (y) −

1∫
0

F (z)dz − a∗b

)
q

(
y

ε

)
dy

)
x. (5.6)

Define F (x, y) = c∗1[0,x](y) − F (y)1[0,x](y) + x(F (y) − ∫ 1
0 F (z)dz − a∗b)1[0,1](y) so that

1

εα
Uε(x) = 1

εα

∫
R

F (x, y)q

(
y

ε

)
dy. (5.7)

Lemma 5.1. Let

Ū (x) = V 2κg

2

∫
R

F (x, y)dR D(y). (5.8)

Then

1

εα
Uε(x) distribution−−−−−−→

ε→0
Ū (x) (5.9)

in C([0,1]).

Proof. We first prove the weak convergence of finite dimensional distributions and then prove tight-
ness.

∀x1, x2, . . . , xn ∈ [0,1] and c1, c2, . . . , cn ∈R, consider

n∑
i=1

ci
1

εα
Uε(xi) = 1

εα

∫
R

n∑
i=1

ci F (xi, y)q

(
y

ε

)
dy. (5.10)

We see that
∑n

i=1 ci F (xi, y) is compactly supported and has only finitely many discontinuities. Then
by Proposition 4.2 we have

n∑
i=1

ci
1

εα
Uε(xi)

distribution−−−−−−→
ε→0

n∑
i=1

ci Ū (xi). (5.11)

Therefore, we have proved the weak convergence of the finite dimensional distributions. To prove
tightness, we apply the Kolmogorov criteria [5]. Note that Uε(0) = 0, so we only need to show that
there exist δ,β, C > 0 such that

E

{∣∣∣∣ 1

εα
Uε(x) − 1

εα
Uε(y)

∣∣∣∣
β}

� C |x − y|1+δ. (5.12)
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Define F1(y) = c∗ − F (y) and F2(y) = F (y) − ∫ 1
0 F (z)dz − a∗b. Then for 0 � y < x � 1, we have

1

εα

(
Uε(x) − Uε(y)

) = 1

εα

x∫
y

F1(z)q

(
z

ε

)
dz + 1

εα
(x − y)

1∫
0

F2(z)q

(
z

ε

)
dz. (5.13)

So

E

{∣∣∣∣ 1

εα
Uε(x) − 1

εα
Uε(y)

∣∣∣∣
2}

� 2

ε2α

∫
[y,x]2

F1(z1)F1(z2)R

(
z1 − z2

ε

)
dz1 dz2

+ 2

ε2α
(x − y)2

∫
[0,1]2

F2(z1)F2(z2)R

(
z1 − z2

ε

)
dz

:= (I) + (II). (5.14)

F2 is bounded, α ∈ (0, 1
2 ) and by Lemma 2.1, we have

(II) � (x − y)2. (5.15)

For (I), we distinguish the cases |y − x| < ε and |y − x| � ε.
If |y − x| < ε, since F1 and R are both bounded, we have (I) � |x − y|2−2α .
If |y − x| � ε, by Lemma 2.1, we have

(I) �
∫

[y,x]2

1

|z1 − z2|2α
dz1 dz2

� |x − y|
x−y∫
0

1

t2α
dt � |x − y|2−2α. (5.16)

Choose δ = 1 − 2α. We have

E

{∣∣∣∣ 1

εα
Uε(x) − 1

εα
Uε(y)

∣∣∣∣
2}

� C |x − y|1+δ (5.17)

for some constant C . The proof is completed. �
5.2. The remainder term

To analyze the remainder term, we first write

cε − c∗ =
∫ 1

0 F (y)q(
y
ε )dy∫ 1

0
1

aε(y)
dy

+
(

b + 1

a∗

1∫
0

F (y)dy

)(
1∫ 1

0
1

aε(y)
dy

− 1
1

a∗

)
, (5.18)

which gives
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ρε = a∗∫ 1
0

1
a(

y
ε )

dy

[(
a∗b +

1∫
0

F (y)dy

)( 1∫
0

q

(
y

ε

)
dy

)2

−
1∫

0

F (y)q

(
y

ε

)
dy

1∫
0

q

(
y

ε

)
dy

]
. (5.19)

We have the following lemma:

Lemma 5.2.

E
{|ρε|

} + sup
x∈[0,1]

E
{∣∣rε(x)

∣∣}� Mε2α (5.20)

for some constant M. Furthermore, we have

1

εα

(
ρε

x

a∗ + rε(x)

)
probability−−−−−−→

ε→0
0 (5.21)

in C([0,1]).

Proof.

E

{( 1∫
0

q

(
y

ε

)
dy

)2}
=

∫
[0,1]2

R

(
y − z

ε

)
dy dz. (5.22)

By Lemma 2.1, R(
y−z
ε ) ∼ κ ε2α

|y−z|2α , so we have

E

{( 1∫
0

q

(
y

ε

)
dy

)2}
� ε2α. (5.23)

By the Cauchy–Schwartz inequality, we can show in the same way that

E

{∣∣∣∣∣
1∫

0

F (y)q

(
y

ε

)
dy

1∫
0

q

(
y

ε

)
dy

∣∣∣∣∣
}
� ε2α. (5.24)

Since
∫ 1

0
1

a(
y
ε )

dy is bounded from below, we have E{|ρε|}� ε2α .

For rε(x) = (cε − c∗)
∫ x

0 q(
y
ε )dy, we write it in two parts:

rε(x) =
(

a∗
1∫

0

(
F (y) −

1∫
0

F (z)dz − a∗b

)
q

(
y

ε

)
dy

) x∫
0

q

(
y

ε

)
dy + ρε

x∫
0

q

(
y

ε

)
dy

= r1
ε(x) + r2

ε(x). (5.25)

By Cauchy–Schwartz, E{|r1
ε(x)|} � ε2α and the constant does not depend on x. q(y) is bounded

and since E{|ρε|}� ε2α , we also have supx∈[0,1] E{|r2
ε(x)|} � ε2α . Thus, we have proved (5.20), and we

have
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sup
x∈[0,1]

1

εα
E

{∣∣∣∣ρε
x

a∗ + rε(x)

∣∣∣∣
}

→ 0. (5.26)

So we have the weak convergence of finite dimensional distribution. Now we prove tightness.
We have rε(0) = 0, and

rε(x1) − rε(x2)

=
(

a∗
1∫

0

(
F (y) −

1∫
0

F (z)dz − a∗b

)
q

(
y

ε

)
dy

) x1∫
x2

q

(
y

ε

)
dy + ρε

x1∫
x2

q

(
y

ε

)
dy. (5.27)

Following the proof of (5.14), we have

E
{∣∣rε(x1) − rε(x2)

∣∣2} � |x1 − x2|2−2α. (5.28)

Therefore,

E

{∣∣∣∣ρε
x1

a∗ − ρε
x2

a∗ + rε(x1) − rε(x2)

∣∣∣∣
2}

� C |x1 − x2|2−2α (5.29)

for some constant C .
Thus ε−α(ρε

x
a∗ + rε(x)) converges in distribution to 0 as ε → 0, so it converges in probability to 0,

which completes the proof. �
Recall that

uε(x) − ū(x)

εα
= 1

εα
Uε(x) + 1

εα

(
rε(x) + ρε

x

a∗

)
. (5.30)

We only need to combine Lemmas 5.1 and 5.2 to complete the proof of Theorem 2.2.

6. Conclusions and further discussion

We considered the homogenization and corrector (random fluctuation) theory of a one dimen-
sional elliptic equation with highly oscillatory coefficients. For a certain class of random coefficients
with long-range correlations, we were able to show that the properly rescaled corrector converges in
distribution in the space of continuous function to a stochastic integral with respect to the Rosenblatt
process. Moreover, the corrector’s amplitude is of order εα and α ∈ (0,1/2) such that R(x) ∼ κ |x|−2α .
Therefore, the longer the range of the correlations, the larger is the amplitude of the corrector.

The appearance of the Rosenblatt process is due to the fact that the Hermite rank of Φ is 2. It is
natural to ask what would happen if the Hermite rank of Φ was greater than 2. In [7,13], the non-
central limit theorems for functionals of Gaussian fields of arbitrary Hermite rank was proved. When
the Hermite rank is greater than 2, the limit is the so-called Hermite process. In that case, we expect
the properly rescaled corrector to converge in distribution to some stochastic integral with respect to
the Hermite process although we have not carried out the calculations in detail.

It would also be interesting to generalize Propositions 4.1 and 4.2 to the case of elliptic equations
in higher dimensions, at least in the setting considered in [2]. To do this, we would have to first find
the counterpart of the Rosenblatt process in higher dimensions, which is a nontrivial problem.
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