
FOCK-GONCHAROV COORDINATES FOR RANK TWO LIE GROUPS

CHRISTIAN K. ZICKERT

Abstract. Let G be a simply connected, simple, complex Lie group of rank 2. We give explicit
Fock-Goncharov coordinates for configurations of triples and quadruples of affine flags in G. We
show that the action on triples by orientation preserving permutations corresponds to explicit
quiver mutations, and that the same holds for the flip (changing the diagonal in a quadrilateral).
This gives explicit coordinates on higher Teichmüller space, and also coordinates for boundary-
unipotent representations of 3-manifold groups. As an application, we compute the (generic)
boundary-unipotent representations in Sp(4,C)/〈−I〉 for the figure-eight knot complement.

1. Introduction

Let G be a simply connected, semisimple, complex Lie group with adjoint group G′. For a
punctured surface S with negative Euler characteristic, Fock and Goncharov [7] define a pair
(AG,S ,XG′,S) of moduli spaces, which can be viewed as an “algebraic-geometric avatar of Higher
Teichmüller theory” [7, p. 5]. We shall here only consider the space AG,S . The space AG,S has
a birational atlas with a chart AG,T for each ideal triangulation T together with an ordering of
the vertices of each triangle compatible with the orientation of S. Each chart is a complex torus,
and is constructed by gluing together copies of a configuration space of triples of affine flags in
general position via a gluing pattern determined by the triangulation. Fock and Goncharov show
that the atlas is positive, i.e. that the transition functions are subtraction free rational functions.
This allows one to define the space of positive points of AG,S . When G = SL(2,C) this space
is Penner’s decorated Teichmüller space [20], and the positive coordinates coming from an ideal
triangulation are Penner’s λ-coordinates.

Our main result is that when G is simple of rank 2, the transition functions are given by
explicit quiver mutations. For this it is enough to consider a rotation (a cyclic change of the
vertex ordering of a triangle) and a flip (change of the diagonal in a quadrilateral). We also give
explicit algorithms for the transition functions in higher rank, and we conjecture that they are
always given by quiver mutations. When G = SL(n,C) explicit quiver mutations were given by
Fock and Goncharov [7, Sec. 10].

Garoufalidis, Thurston and Zickert [12] (see also [2, 4]) used the work of Fock and Goncharov to
define coordinates (called Ptolemy coordinates) for boundary-unipotent SL(n,C)-representations
of 3-manifold groups. The relations between these coordinates (called Ptolemy relations) are
exactly the mutation relations found by Fock and Goncharov. The coordinates seem to be very
efficient for concrete computations (see [6, 5] for a database). Our main results provide similar
coordinates for all simply connected, simple, complex Lie groups of rank 2.
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2 CHRISTIAN K. ZICKERT

2. Statement of results

Let G be a simply connected, simple, complex Lie group of rank 2, i.e., G is either A2 =
SL(3,C), B2 = Spin(5,C) ∼= Sp(4,C) = C2 or G2. There is a canonical central element sG ∈ G,
which is either trivial or of order 2 (see Section 4.2). It is trivial for A2 and G2, and non-trivial
for B2 and C2.

Fix a maximal unipotent subgroup N and let A = AG = G/N denote the affine flag variety of
N -cosets in G. The diagonal left G action on Ak does not have a geometric quotient, but if we
restrict to tuples that are sufficiently generic (see Definition 5.1), there is a geometric quotient
Conf∗k(A). It is a sub-variety of the algebro-geometric quotient Ak//G.

To each of the groups A2, B2, C2 and G2 we associate a weighted quiver QG (see Definition 3.1)
of weight 1, 2, 2, and 3, respectively. We think of the graphs as being immersed in the plane
(in fact, in a triangle), but the immersion only serves as a visual representation, providing a
convenient labeling scheme, and is not formally part of the data.

v1
v1

v2

v1

v2

v1

v2

v4

v3

Figure
1. QA2 .

Figure
2. QB2 .

Figure
3. QC2 .

Figure
4. QG2 .

Every quiver Q has an associated seed torus TQ (see Definition 3.7), which is a complex torus
with a coordinate for each vertex. Mutation (see Definition 3.6) in a vertex vk of QG gives rise
to another quiver µvk(QG) together with a birational map of seed tori µvk : TQG

→ Tµvk (QG). For
a sequence (i1, . . . , ik) of vertex indices define

(2.1) µ(i1,...,ik) = µvikµvik−1
. . . µvi1 .

2.1. Rotations. Let

(2.2) µrot
A2

= id, µrot
B2

= µrot
C2

= µ(1,2), µrot
G2

= µ(1,2,3,1,4,2).

The following is a simple verification, which is illustrated in Figure 5 for G = B2.

Lemma 2.1. The quiver µrot
G (QG) is isomorphic to QG via an isomorphism which corresponds

to a clockwise rotation by 120 degrees.

Theorem 2.2. There is a canonical birational equivalence

(2.3) M : Conf∗3(AG)→ TQG

such that the map (g0N, g1N, g2N)→ (g2N, g0N, g1N) corresponds to the mutation sequence µG
under the isomorphism Tµrot

G (QG)
∼= TQG

induced by Lemma 2.1.

Remark 2.3. The mapM is the composition of a birational equivalence ∆: Conf∗3(AG)→ TQG

given by minor coordinates (see Proposition 5.9) and a monomial map m : TQG
→ TQG

(see
Section 8.1).
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v1

v2

v1

v2

µv1 µv2

v2

v1

Figure 5. The mutation µrot
B2

corresponds to a rotation by 120 degrees (after
rearranging the position of v1 and v2).

2.2. The flip. The generic configurations form an incomplete simplicial set with face maps

(2.4) εi : Conf∗k(A)→ Conf∗k−1(A), (g0N, . . . , gk−1N) 7→ (g0N, . . . , ĝiN, . . . , gk−1N).

For i = 0, . . . , k, let κi denote the map Conf∗k(A)→ Conf∗k(A) which replaces the coset giN by
gisGN leaving all other cosets fixed.

2.2.1. Gluing configurations. We now consider configuration spaces Conf∗3(A)×sG02 Conf∗3(A) and
Conf∗3(A)×sG13 Conf∗3(A) obtained by gluing together copies of Conf∗3(A) together along Conf∗2(A).
Each is birationally equivalent to Conf∗4(A) and is defined by the pushout diagram

(2.5)

Conf∗3(A)
εj−1◦κl−1

))
Conf∗4(A)

εi
55

εj◦κk ))

Ψkl // Conf∗3(A)×sGkl Conf∗3(A) //

OO

��

Conf∗2(A),

Conf∗3(A)

εi

55

where (i, j, k, l) is either (0, 2, 1, 3) or (1, 3, 0, 2). The map Ψkl is illustrated in Figure 6.

g0N

g1N

g2N

g3N g1N

g2N g2N

g0sGN g0N

g1N

g1sGN

g3N

g3N

g2N

g2N

g3N

Figure 6. Element in Conf∗4(A) and its image in Conf∗3(A) ×sG02 Conf∗3(A) and
Conf∗3(A)×sG13 Conf∗3(A).

2.2.2. Gluing quivers. Similar to the gluing of configurations, we can glue together copies of QG
to form quivers QG ∪02 QG and QG ∪13 QG. The formal construction is described in Section 3.2.
We denote the (non-frozen) vertices of the “right copy” of QG in QG ∪02 QG by v̄i, and those
of the “left copy” by vi. Similarly, we use vi for the “top copy” of QG in QG ∪13 QG and v̄i for
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the bottom copy. The two vertices on the common edge are indexed by 0 and ∞ (see Figures 7
and 8). Let

(2.6)
µflip
A2

= µ(0,∞,1,1̄), µflip
B2

= µflip
C2

= µ(0,∞,1,2,1̄,2̄,0,1,1̄)

µflip
G2

= µ(0,∞,3,2,1,3,4,2,3̄,4̄,2̄,0,3,1,4,1̄,3̄,4̄,0,3,1̄,4̄,3̄,1̄).

The following is a simple verification, which is illustrated in Figure 9 for G = C2.

Lemma 2.4. There is a canonical isomorphism between µflip
G (QG ∪02 QG) and QG ∪13 QG.

We may thus identify the seed tori T
µflip
G (QG∪02QG)

and TQG∪13QG
.

Remark 2.5. For verification of Lemmas 2.4 and 2.1, the java applet [14] by Mark Keller is
very useful.

1

0

3

2

0

1 2

0

1

QC
2Q

C
2

2

v0

v∞

v1 v2

v̄1

v̄2

v10

v01

v12

v21 v23

v32

v03

v30

2

0

1 3

QC2 20

1

0

1 2

Q
C
2

v∞ v0

v1

v2

v̄1

v̄2

v12

v21

v01

v10

v03

v30

v23

v32

Figure 7. The quiver QC2 ∪02 QC2 . Figure 8. The quiver QC2 ∪13 QC2 .

Theorem 2.6. We have a commutative diagram

(2.7)

Conf∗3(A)×sG02 Conf∗3(A)
∼= //

Ψ13Ψ−1
02
��

TQG∪02QG

µflip
G
��

Conf∗3(A)×sG13 Conf∗3(A)
∼= // TQG∪13QG,

where the vertical maps are induced by the mapM in Theorem 2.2.

Conjecture 2.7. For any semisimple, simply connected, complex Lie group G, there exists a
quiver QG and quiver mutations µrot

G and µflip
G such that Theorems 2.2 and 2.6 hold. The map

M should be a composition of minor coordinates and a monomial map (see Remark 2.3).

Remark 2.8. The minor coordinates depend on a choice of reduced word for the longest element
in the Weyl group. Hence, the quiver in Conjecture 2.7 should as well. In rank 2 there are only
two reduced words, and we have selected the one starting with 1.
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µv0 µv∞

µv1 µv̄1

µ(1,2,1̄,2̄,0)

Figure 9. First and last two mutations in µflip
C2

(QC2). The final configuration
corresponds to QG∪13QG after rearranging the vertices inside the dotted square.

2.3. An atlas on AG,S. Let S be an oriented punctured surface with negative Euler character-
istic. The universal cover of S is an open oriented disk D, and the lift of the punctures define
a countable, cyclically ordered π1(S)-set F∞(S) of points on ∂D, the Farey set [7, Sec. 1.3].
Let F∞(S) be the double cover of F∞(S) induced by the double cover of ∂D, and let σ denote
the non-trivial automorphism. The fundamental group of the punctured tangent bundle is a Z-
extension of π1(S), and the quotient by 2Z is a central Z/2Z-extension π1(S) (see [7, Sec. 2.4]).
Let σ denote the generator.

The space AG,S is the moduli space of decorated twisted G-local systems on S ([7, Def 2.4]).
When sG is trivial we may regard it as the quotient stack of pairs (ρ,D) by the G-action
g(ρ,D) = (gρg−1, gD), where ρ : π1(S) → G is boundary-unipotent (loops encircling punctures
map to conjugates of N), and D : F∞(S)→ A is a ρ-equivariant map. When sG is non-trivial, it
is the quotient stack of pairs (ρ,D), where ρ : π1(S)→ G is a boundary-unipotent representation
taking σ to sG, and D : F∞(S)→ A is ρ-equivariant (see [7, Sec. 8.6]).

Given a topological ideal triangulation T of S we get an atlas on AG,S as in [7, Sec. 8]. The
process is illustrated in Figures 10 and 11 in the case when S is a twice punctured torus and
G = B2. Pick a fundamental polyhedron P for T in D. The triangulation of S induces a
triangulation of P . Pick an ordering O of the vertices of P agreeing with the cyclic ordering on
F∞(S). This associates a copy of the quiver QG to each triangle, and by gluing these together,
we obtain a quiver whose seed torus embeds in AG,S . Note that if two edges in P are identified,
the corresponding coordinates are identified as well. By [7, Thm. 8.2] this provides a positive
atlas with a chart for each triple (T , P,O). Our main results give explicit formulas for how the
coordinates change when changing the triple. The pair (ρ,D), or (ρ,D), corresponding to a
collection of coordinates can be explicitly computed using a natural cocycle (see Section 6).

2.4. 3-manifold groups and Ptolemy varieties. Let M be a compact 3-manifold with a
topological ideal triangulation T . A representation π1(M)→ G is boundary-unipotent if periph-
eral subgroups map to conjugates of N , and a decoration of a boundary-unipotent representation
is a ρ-equivariant assignment of an N -coset to each ideal point in the universal cover of M . In
Section 9.2 we define a variety PG(T ) by gluing together configurations spaces Conf∗4(A) using
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4

0 1

Q
G

2

3

5

Q
G

Q
G

Q
G

a b

b a

Figure 10. Fundamental polyhe-
dron for the twice punctured torus S.

Figure 11. Coordi-
nates on AB2,S .

a gluing pattern determined by the triangulation. Most of the results in [12] on Ptolemy vari-
eties for SL(n,C) have natural analogues for G. As in [12, (9.26)] there is a natural one-to-one
correspondence

(2.8)
{
Points in
PG(T )

}
oo 1:1 //

{
Generically decorated, boundary-unipotent

π1(M)→ G

}/
G

and our main results yield an explicit formula for this map.
By a result of Kostant [17] there is a canonical homomorphism SL(2,C)→ G, which preserves

unipotent elements and takes sSL(2,C) to sG. If M = H3/Γ is a cusped hyperbolic 3-manifold,
there is thus a canonical boundary-unipotent representation ρG : π1(M)→ G

/
〈sG〉. As explained

e.g. in [21, 12], ρG need not have a boundary-unipotent lift to G, and the obstruction to the
existence of such a lift is a class in H2(M,∂M ;Z/2Z). For each σ ∈ H2(M,∂M ;Z/2Z) there is
variety P σG(T ), and the analogue of (2.8) is (c.f. [12, (9.31)])

(2.9)
{
Points in
P σG(T )

}
z:1 //

{
Generically decorated, boundary-unipotent
π1(M)→ G

/
〈sG〉 with obstruction class σ

}/
G,

where z is the order of the group Z1(M,∂M ;Z/2Z) of Z/2Z valued 1-cocycles (with cell structure
induced by T ).

As in [12, Sec. 4.1], there is a natural action of Hc on PG(T ) and P σG(T ), where H is the
maximal torus in G and c is the number of boundary components of M . The action is monomial
and the quotients are denoted by PG(T )red and P σG(T )red. The maps (2.8) and (2.9) induce maps

(2.10) PG(T ) //
{
Boundary-unipotent

π1(M)→ G

}/
G , P σG(T ) //

Boundary-unipotent
π1(M)→ G,

obstruction class σ

/G
which are generically 1 : 1 and |H1(M,∂M ;Z/2Z)| : 1, respectively.

2.5. Computations for the figure-eight knot complement. Let G = Sp(4,C), and let M
be the figure-eight knot complement with the standard ideal triangulation T with 2 simplices.
The fundamental group of M has a presentation

(2.11) π1(M) = 〈x1, x2

∣∣ x1w = wx2, w = x2x
−1
1 x−1

2 x1〉.
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In Section 9.5 we show that PG(T ) is empty and that P σG(T ) consists of two zero-dimensional
components of degree 2 and 6, respectively. The component of degree 2 is defined over Q(

√
−3),

and the corresponding representation in Sp(4,C)/〈−I〉 takes x1 and x2 to
(2.12)

1 −9(1+
√
−3)

8
3(−1+

√
−3)

4 1 +
√
−3

0 1 −1−
√
−3 −16

9
0 0 1 0

0 0
9(1+

√
−3)

8 1

,


0 0
3(−1+

√
−3)

4 0

0 0 −2 + 2
√
−3

4(−1+
√
−3)

9

1
3 +

√
−3
3 −3(1+

√
−3)

2 8 16
3

0 9
16

(
1 +
√
−3
)

−9 −4

,
respectively. The component of degree 6 is defined over Q(ω), where

(2.13) ω6 − ω5 + 3ω4 − 5ω3 + 8ω2 − 6ω + 8 = 0,

and the corresponding representation is given by

(2.14) x1 7→


1 a2 b1 b2
0 1 b3 b4
0 0 1 0
0 0 c3 1

 , x2 7→


0 0 b′1 0
0 0 b′3 b′4
c′1 c′2 d′1 d′2
0 c′4 d′3 d′4

 ,
where
(2.15)

a2 = −c3 =
ω5

16
+

7ω3

16
− 5ω2

8
− 5ω

8
− 3

2
, b1 = −ω

5

8
+
ω3

8
+
ω2

4
− 3ω

4
− 1,

b2 = −b3 = −ω
5

32
+
ω4

16
+

3ω3

32
+
ω2

16
− ω

16
− 3

4
, b4 = 2

b2
a2
,

c′1 = −b′−1
1 =

3ω5

32
− 3ω4

16
+

7ω3

32
− 11ω2

16
+

11ω

16
− 1

4
,

c′2 = −ω
5

4
+
ω4

2
− 3ω3

4
+ ω2 − 5ω

2
+ 3, c′4 = −b′−1

2 = −ω
5

4
+
ω4

2
− 3ω3

4
+ ω2 − 5ω

2
+ 3,

b′3 =
3ω5

8
− ω4

2
+

3ω3

8
− 3ω2

2
+

9ω

4
− 1

2
, b′4 =

b′3
b′1c
′
2

,

d′1 =
ω5

8
+

3ω4

4
− 3ω3

8
+

3ω2

4
− 7ω

4
+ 7, d′2 =

b′4d
′
3 − b′3d′4
b′1

,

d′3 = −ω5 + ω4 − 3ω3

2
+

7ω2

2
− 6ω − 1, d′4 = −ω

5

8
− 3ω4

4
+

3ω3

8
− 3ω2

4
+

7ω

4
− 3.

These representations all lift to representations in Sp(4,C), but no lift is boundary-unipotent.

Remark 2.9. We stress that the notion of genericity depends on the triangulation. There may
be more representations than those detected by the Ptolemy variety. A triangulation independent
Ptolemy variety detecting all irreducible representations is defined for G = SL(2,C) in [23].

3. Quivers, seed tori, and mutations

The following definition of a (weighted) quiver serves our needs. The definition is a special
case of the notion of a seed as defined by Fock and Goncharov [8]; see Remark 3.5. For closely
related notions see e.g. [19, 15].

Definition 3.1. Let m ≥ 1 be an integer. A quiver (of weight m) is a directed graph without
2-cycles together with a partition of the vertices and edges into two types; fat vertices (of weight



8 CHRISTIAN K. ZICKERT

m) or not, and half-edges or not, respectively. In the case when m = 1 we do not distinguish
between vertices. All edges joining two vertices are required to have the same type, and the
multiplicity of a half-edge must be odd. An isomorphism of quivers is an isomorphism of graphs
preserving the types of edges and vertices.

Example 3.2. The graphs in Figures 1, 2, 3, and 4 define quivers QA2 , QB2 , QC2 and QG2 , and
we declare the weights to be 1, 2, 2, and 3, respectively.

For a quiver Q let VQ denote the set of vertices. When VQ = {vi}i∈I , we shall denote a vertex
either by vi or simply by i. For vertices i, and j, let σij denote the number of directed edges
from i to j counting a half-edge as 1/2, and counting an edge from j to i negative. A quiver
determines a pair of functions

(3.1)

dQ : VQ → {1,m}, i 7→ di, εQ : VQ × VQ →
1

2
Z, (i, j) 7→ εij

di =

{
m if i is fat
1 otherwise

, εij =
dj

gcd(di, dj)
σij .

The εij are illustrated in Figure 12.

i

j
εij = r

εji = −r
i

j
εij = r

εji = −r
i

j
εij = r

εji = −mr
i

j
εij = r

2

εji = −mr
2

r r r r

i

j
εij = r

2

εji = r
2

r

Figure 12. Definition of εij when i and j are joined by an edge of multiplicity r.

Lemma 3.3. For any set V and functions d : V → {1,m} and ε : V × V → 1
2Z such that

εij/dj = −εji/di ∈ Q for all (i, j) ∈ V × V , there is a unique quiver Q with vertex set V
satisfying that dQ = d and εQ = ε.

Proof. By (3.1), d determines which vertices are fat, and ε determines the multiplicity of an
edge. An edge is a half-edge if and only if either εij or εji is a half-integer. �

Definition 3.4. A vertex of a quiver is frozen if it lies on a half-edge. The set of frozen vertices
is denoted by V 0

Q.

For the quivers QG we index the six frozen vertices by pairs ij as shown in Figure 14.

Remark 3.5. The tuple (VQ, V
0
Q, εQ, dQ) is a seed in the sense of [8, Def. 1.6].

3.1. Quiver mutations and seed tori. A process called mutation transforms one quiver to
another. We follow Fock and Goncharov [8].

Definition 3.6. Let Q be a quiver and k a non-frozen vertex. Let µk(Q) be the unique quiver
with Vµk(Q) = VQ, dµk(Q) = dQ, and

(3.2) εµk(Q)(i, j) =


−εij if k ∈ {i, j}
εij if εikεkj ≤ 0, k /∈ {i, j}
εij + |εik|εkj if εikεkj > 0, k /∈ {i, j}.

We say that µk(Q) is obtained from Q by a mutation at k.
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Note that mutation is an involution, i.e., µk(µk(Q)) = Q. The formula (3.2) implies that a
mutation transforms the graph as shown in Figure 13. We refer to the Figures 5, 9, and 14 for
examples.

di t

dk

r

dj

s

di t + rsαijk

dk

r

dj

s

di t

dk

r

dj

s

di

dk

r

dj

s

µk µk

t + 2rsαijk

Figure 13. Mutation of the graph. The integer αijk is m if di = dj 6= dk and 1
otherwise.

Definition 3.7. The seed torus associated to a quiver Q is the complex torus

(3.3) TQ = HomZ(ΛQ,C∗),

where ΛQ is the free abelian group generated by VQ. The natural identification of TQ with
(C∗)|VQ|, endows TQ with a coordinate system {ai}i∈VQ .

A mutation induces a birational map of seed tori

(3.4) µk : TQ → Tµk(Q)

(3.5) µ∗k(a
′
k) =

1

ak

( ∏
j|εkj>0

a
εkj
j +

∏
j|εkj<0

a
−εkj
j

)
, µ∗k(a

′
i) = ai, for i 6= k

Since mutations are only allowed at non-frozen vertices, the coordinates of the frozen vertices
always stay fixed.

Example 3.8. For the mutation shown in Figure 14 we have

(3.6)
aij = a′ij = a′′ij , a′1 =

1

a1

(
a01a

2
02a12 + a20a

2
2

)
, a′2 = a2

a′′1 = a′1, a′′2 =
1

a′2

(
a′1a
′
10 + a′01a

′
21a
′
02

)
=
a01a

2
02a10a12 + a10a

2
2a20 + a01a02a1a21

a1a2
.

a1

a2

a′′1

a′′2

µv1 µv2

a′2

a′1

a01

a01

a10 a12

a21

a20

a′01

a′02

a′10 a′12

a′21

a′20

a′′01

a′′02 a′′20

a′′21

a′′12
a′′10

Figure 14. Coordinates on TQB2
, Tµv1 (QB2

), and Tµv2µv1 (QB2
).
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3.2. Gluing quivers along frozen vertices. For a subset S of VQ, let QS denote the largest
subgraph of Q with vertex set S. It inherits a quiver structure from Q.

Definition 3.9. Let Q and Q′ be quivers and let W ⊂ V 0
Q and W ′ ⊂ V 0

Q′ be subsets of frozen
vertices, and φ : QW → QW ′ an isomorphism. The quiver Q ∪φ Q′ is the quiver obtained by
gluing together Q and Q′ via φ, eliminating 1 and 2-cycles, and declaring that the gluing of two
half-edges is a full edge (not a half-edge).

Note that the vertices in Q∪φQ′ corresponding toW andW ′ are no longer frozen, and are thus
open for mutation. Also note that the seed torus for Q ∪φ Q′ is the fiber product TQ ×TQW

TQ′ .

3.2.1. The quivers QG ∪02 QG and QG ∪13 QG. We now give a formal definition of the quivers
QG ∪02 QG and QG ∪13 QG introduced in Section 2. Recall that the frozen vertices of QG are
indexed by pairs ij with i, j ∈ {0, 1, 2}. Let σG ∈ S2 be the trivial permutation when G = A2 and
the non-trivial permutation otherwise (this is the permutation of the fundamental weights given
by the longest element in the Weyl group, see Section 4.1.3). Denote the non-frozen vertices of
one copy of QG by v̄i and let

(3.7) φ02 : {v01, v01} → {v̄02, v̄20}, φ13 : {v02, v20} → {v̄12, v̄21},

be such that φ02 takes the pair (v01, v01) to σG(v̄02, v̄20) and φ13 takes (v02, v20) to σG(v̄12, v̄21).
We can now define QG∪klQG to be QG∪φklQG. We denote the images of v01 and v10 in QG∪02QG
by v∞ and v0, respectively. Similarly, we denote the images v02 and v20 in QG ∪13 QG by v∞
and v0. The frozen vertices of QG ∪kl QG are indexed according to the edges of a quadrilateral
(see Figures 7 and 8).

3.3. Explicit formulas for mutations. An isomorphism of quivers induces an isomorphism of
seed tori. In particular, by Lemma 2.1, we may identify Tµrot(QG) with TQG

, and the identification
is such that a′ij = ai−1,j−1 (indices modulo 3).

3.3.1. Formulas for µrot
G . Following Example 3.8 the explicit formulas for the non-frozen coordi-

nates for B2 and C2 are given by

(3.8)
B2 : a′1 =

1

a1

(
a01a

2
02a12 + a20a

2
2

)
, a′2 =

a01a
2
02a10a12 + a10a

2
2a20 + a01a02a1a21

a1a2

C2 : a′1 =
a01a02a12 + a2a20

a1
, a′2 =

a10(a01a02a12 + a2a20)2 + a2
01a02a

2
1a21

a2
1a2

.

For G2 the closed formula is rather lengthy so we instead introduce a “dummy variable” for each
intermediate mutation.

(3.9)
G2 : z1a1 = a2a20 + a01a02a3, z2a2 = a3

01a
2
02a4 + z3

1 , a′1a3 = a20a4 + a12z1,

a′2a4 = a10a
′3
1 + a21z2, a′3z1 = a2

01a02a
′
1 + z2, a′4z2 = a3

01a02a
′
2 + a10a

′3
3 .

3.3.2. Formulas for µflip
G . As for µrot

G2
we express the formulas for the non-frozen coordinates via

dummy variables zi. For A2 the relations are Ptolemy relations, i.e. of the form ef = ab+ cd.

(3.10)
A2 : ā′1a0 = a01a1 + a03ā1, a′1a∞ = a1a21 + ā1a23,

a′0a1 = a30a
′
1 + a32ā

′
1, a′∞ā1 = a10a

′
1 + a12ā

′
1.
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(3.11)

B2 : z1a0 = a2ā2 + ā1a32, ā′1a∞ = a01a1 + ā1a30, z2a1 = a2
03ā1a23 + a2

2ā
′
1,

ā′2a2 = a03z1 + z2, z3ā1 = z2
1 + a12z2, a′2ā2 = a10a12a32 + a21z1,

a′∞z1 = a′2ā
′
2 + a10z3, a′0z2 = a23ā

′2
2 + ā′1z3, a′1z3 = a′0a

′2
2 + a12a23a

′2
∞.

(3.12)

C2 : z1a0 = a2ā2 + ā2
1a32, ā′1a∞ = a01a1 + ā1a30, z2a1 = a03ā1a23 + a2ā

′
1,

ā′2a2 = a03z1 + z2
2 , z3ā1 = z1 + a12z2, a′2ā2 = a10a

2
12a32 + a21z1,

a′∞z1 = a′2ā
′
2 + a10z

2
3 , a′0z2 = a23ā

′
2 + ā′1z3, a′1z3 = a′0a

′
2 + a12a23a

′
∞.

(3.13)

G2 : z1a0 = a32ā
3
3 + a4ā4, ā′1a∞ = a01a1 + a30ā3, z2a3 = a2a23 + a1a4,

z3a2 = a03a
2
4 + z3

2 , z4a1 = a03a23ā3 + ā′1z2, z5z2 = ā3z3 + a4z4,

z6a4 = z1z3 + z3
5 , ā′2z3 = z3

4 + a03z6, z7ā3 = z1 + ā1z5,

z8ā4 = ā3
1a32 + ā2z1, a′4ā2 = a10a

3
12a32 + a21z8, z9z1 = z3

7 + z6z8,

z10z5 = z6 + z4z7, ā′3z4 = a23ā
′
2 + ā′1z10, ā′4z6 = z3

10 + ā′2z9,

z11ā1 = a12z7 + z8, z12z7 = z10z11 + z9, z13z8 = a10z
3
11 + a′4z9,

a′∞z9 = a10z
3
12 + ā′4z13, a′0z10 = a23ā

′
4 + ā′3z12, z14z11 = a′4z12 + a12z13,

a′2z13 = a′24 a
′
∞ + z3

14, a′1z12 = a12a23a
′
∞ + a′0z14, a′3z14 = a23a

′
2 + a′1a

′
4.

4. Preliminaries on Lie groups

Let G be a simply connected, semisimple, complex Lie group of rank r with Lie algebra g. It
is well known that G is the C points of a linear algebraic group over Z, and is thus an affine
variety.

4.1. Basic notions. Fix a Cartan subalgebra h of g, and a set Π = {α1, . . . , αr} ⊂ h∗ of simple
roots. This gives rise to a root space decomposition

(4.1) g = n− ⊕ h⊕ n, n− =
⊕
α∈∆−

gα, n+ =
⊕
α∈∆+

gα,

where ∆− and ∆+ denote the sets of negative, respectively, positive roots, and gα denotes the
root space for a root α. Let N−, H, and N denote the Lie subgroups of G with Lie algebras n−,
h, and n, respectively. Fix Serre generators ei ∈ gαi , fi ∈ g−αi , and hi ∈ h of g, and let

(4.2) xi(t) = exp(tei) ∈ N, yi(t) = exp(tfi) ∈ N−, t ∈ C.

4.1.1. Fundamental weights and the Cartan matrix. Let 〈, 〉 denote the symmetric bilinear form
on h∗ dual to the Killing form B on h. For each root α, let Hα ∈ h be the unique element
satisfying that α(H) = B(H,Hα), and let

(4.3) α∨ =
2

〈α, α〉
α, hα =

2

〈α, α〉
Hα.

The element hαi is the Serre generator hi. The set of γ ∈ h∗ with γ(hi) ∈ Z for all i form a
lattice P generated by the fundamental weights, which are the elements ω1, . . . , ωr ∈ h∗ satisfying
that ωi(hαj ) = δij , or equivalently, that 〈ωi, α∨j 〉 = δij . The Cartan matrix is the matrix A with
entries Aij = 〈α∨i , αj〉.
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4.1.2. Coordinates on H. For every weight ω, there is a character χω : H → C∗, and for every
root α there is a cocharacter χ∗α : C∗ → H. These are defined by

(4.4) χω(exp(h)) = eω(h), χ∗α(et) = exp(hαt),

and satisfy

(4.5) χω ◦ χ∗α(t) = t〈ω,α
∨〉, t ∈ C∗.

It follows that we have an isomorphism

(4.6) H ∼= (C∗)r, h 7→
(
χω1(h), . . . , χωr(h)

)
, χ∗α1

(h1) · · ·χ∗αr
(hr)←[ (h1, . . . , hr)

We may thus identify H with (C∗)r. We sometimes denote χ∗αi
(t) by hti.

4.1.3. The Weyl group and reduced words. The Weyl group W is the group generated by the
simple root reflections si given by

(4.7) si(γ) = γ − 〈γ, α∨i 〉αi, γ ∈ h∗.

The Weyl group is isomorphic to NG(H)/H, and there is a section (see [9, Sec. 1.4])

(4.8)
W → NG(H), w 7→ w

si1 · · · sik 7→ si1 · · · sik , si = xi(−1)yi(1)xi(−1).

The Weyl group is a Coxeter group and there is a unique longest element w0. The Weyl group
acts on h∗ and permutes the simple roots and fundamental weights. It also acts on H via (4.8),
i.e. w(h) = whw−1. The action by w0 is such that w0(ωi) = −ωσG(i) for a permutation σG ∈ Sr.
In particular, if h = (h1, . . . , hr) ∈ H we have

(4.9) w0(h) = (h−1
σG(1), . . . , h

−1
σG(r)).

Using the explicit root data given in Section 8 one checks that σG ∈ S2 is trivial for B2, C2 and
G2 and non-trivial for A2.

A reduced word for w ∈W is a tuple i = (i1, . . . , im), with m minimal, such that

(4.10) w0 = si1 · · · sim .
In all of the following we shall fix a reduced word i = (i0, . . . , im) for w0. The length m is equal
to the number of positive roots.

4.2. The element sG. Consider the element

(4.11) sG =
∏
α∈∆+

χ∗α(−1) ∈ H.

As shown in [7, Sec. 2.3], sG is central in G and has order dividing 2, and w0
−1 = w0sG. Clearly,

all coordinates of sG are either 1 or −1.

4.3. Chamber weights and generalized minors. References for this section include [1, 9, 7].
We adopt the notation of [1, 9], and warn the reader that the symbols w and ω look very similar.

Let G0 be the Zariski open subset of elements g ∈ G admitting a (necessarily unique) factor-
ization

(4.12) g = [g]−[g]0[g+], [g]− ∈ N−, [g]0 ∈ H, [g]+ ∈ N.
When writing g = yhx, we shall often implicitly assume that y ∈ N−, h ∈ H, and x ∈ N . The
factors y, h, and x are regular functions of g ∈ G0.

Definition 4.1. A chamber weight is an element γ ∈ h∗ in the Weyl orbit of a fundamental
weight, i.e. γ = wωi for some i ∈ {1, . . . , r} and w ∈W .
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Definition 4.2. For a chamber weight γ = wωi, the (generalized) minor associated to γ is the
regular function ∆γ : G→ C whose restriction to wG0 is given by

(4.13) ∆γ(g) = χωi([w
−1g]0) ∈ C.

Remark 4.3. For G = Ar, W = Sr and the Chamber weight for σωi is the i × i minor with
rows σ(1), . . . , σ(i) and columns 1, . . . , i.

Recall that we have fixed a reduced word i = (i1, . . . im) for w0.

Definition 4.4. An i-chamber weight is a chamber weight of the form

(4.14) wkωi, wk = simsim−1 · · · sik , i ∈ {1, . . . , r}, k ∈ {1, . . . ,m+ 1}.

The corresponding minor is called an i-minor.

Proposition 4.5 ([1, Prop. 2.9]). There are m+ r distinct i-chamber weights, the fundamental
weights ωi and the weights

(4.15) γk = wkωik = simsim−1 · · · sikωik , k ∈ {1, . . . ,m}.

Moreover, all chamber weights w0ωi are i-chamber weights.

Definition 4.6. We call the minors ∆w0ωi and ∆ωi edge minors and them−r remaining i-minors
face minors.

Note that the edge minors ∆wi are the coordinates on H given in (4.6).

4.4. Some biregular isomorphisms. The transpose map (see e.g. [9, 1]) is the unique biregular
antiautomorphism Ψ: G→ G satisfying

(4.16) Ψ(xi(t)) = yi(t), Ψ(h) = h, Ψ(yi(t)) = xi(t), t ∈ C, h ∈ H.

One has (see [7, p. 55])

(4.17) Ψ(w0) = w0
−1 = w0sG.

The varieties N∩G0w0 and N−∩w0G0 will be of special significance. One easily checks that Ψ
restricts to a biregular isomorphism between them. Fomin and Zelevinsky [9] define a biregular
isomorphism

(4.18) π− : N ∩G0w0 → N− ∩ w0G0, x 7→ w0
−1[xw0

−1]+w0, [w0y]+ ← [ y.

Similarly, one has a biregular isomorphism (also considered in [18, 7])

(4.19) Φ: N ∩G0w0 → N− ∩ w0G0, x 7→ [xw0]−, w0[w0
−1y]−w0

−1 ←[ y.

Note that Φ is determined by the (equivalent) properties

(4.20) xw0N = Φ(x)[xw0]0N, xN− = Φ(x)[xw0]0w0sGN−, x ∈ N ∩G0w0,

which allow one to write a coset xw0hN as ykN and vice versa (and similarly for N− cosets).
Each of the isomorphisms respects conjugation by elements h ∈ H, i.e., we have

(4.21) Ψ(hxh−1) = h−1Ψ(x)h, Φ(hxh−1) = hΦ(x)h−1, π−(hxh−1) = hπ−(x)h−1.
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4.5. Factorization coordinates. Consider the map

(4.22) xi : Cm → N, (t1, . . . , tm) 7→ xi1(t1) · · ·xim(tm).

Theorem 4.7 below summarizes [9, Thm 2.19] and [1, Thms. 1.4, 4.3].

Theorem 4.7. Let x = xi(t1, . . . , tm) ∈ N ∩G0w0, and let y = π−(x). The ti and the i-minors
of y are related by the monomial expressions

(4.23) tk =
1

∆wkωik (y)∆wk+1ωik (y)

∏
j 6=ik

∆wkωj (y)−Aj,ik , ∆γk(y) =
∏
l≥k

t
〈γk,(αi

l)
∨〉

l ,

where αi
l = wl+1(αil).

Remark 4.8. Every minor occurring is equal to either ∆ωi , or some ∆γk . This can be seen
using that siωj = ωj for i 6= j (see e.g. [1, (2.5)]). For example, if i = (1, 2, 1, 2, 1, 2), then
w3ω2 = s2s1s2s1ω2 = s2s1s2ω2 = γ4.

Corollary 4.9. The variety xi((C∗)m)∩G0w0 is isomorphic to the Zariski open subset of N− ∩
w0G0 of points where the i-minors are non-zero. �

Corollary 4.10. The map N− → Cm taking y to (∆γ1(y), . . . ,∆γm(y)) is a birational equiva-
lence. �

5. Configuration spaces of tuples

Let G be as in Section 4, i.e. semisimple of rank r. Most of the results of this section can be
found in Fock-Goncharov [7, Sec. 8]. Since our notation differs slightly from that of Fock and
Goncharov, we give complete proofs.

Definition 5.1. A tuple (g0N, . . . , gk−1N) ∈ Ak is sufficiently generic if

(5.1) g−1
i gj ∈ w0G0, i 6= j ∈ {0, . . . , k − 1},

a condition, which is open, and independent of the choice of coset representatives. The subvariety
of Ak of sufficiently generic tuples is denoted by Ak,∗, and the quotient of Ak,∗ by the diagonal
left G action is denoted by Conf∗k(A).

It is convenient to view a tuple (g0N, . . . , gk−1N) as an ordered (k−1)-simplex ∆k−1 together
with a labeling of the ith vertex by giN .

5.1. The variety structure on Conf∗k(A). For k > 2, let Wk be the Zariski open subset of
(B− ∩ w0G0)k−2 consisting of points (a2, . . . , ak−1) with a−1

i aj ∈ w0G0 for i 6= j. Let W2 be a
singleton.

Proposition 5.2. For k > 1 we have an isomorphism of varieties

(5.2) G×H ×Wk → Ak,∗, (g, h, a2, . . . , aj) 7→ g(N,w0hN, a2N, . . . , ak−1N)

Proof. Let α = (g0N, . . . , gk−1N) ∈ Ak,∗ with gi ∈ G fixed coset representatives. Since g−1
i gj ∈

w0G0, we have factorizations g−1
0 gi = w0yihixi. Let

(5.3) ai = w0y
−1
1 yihi[w0y

−1
1 yihi]

−1
+ ∈ B− ∩G0, i = 2, . . . , k − 1.

The ai and hi are independent of the coset representatives gi and are regular functions of α.
Letting g = g0w0y1w0

−1, one has α = g(N,w0h1N, a2N, . . . , ak−1N). This proves the result. �

Corollary 5.3. The quotient Conf∗k(A) = Ak,∗/G is a variety isomorphic to H ×Wk. �
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Example 5.4. For k = 2 and 3, we have

(5.4)
H ∼= Conf∗2(A), H ×B− ∩ w0G0

∼= Conf∗3(A).

h 7→ (N,w0hN), (h, a) 7→ (N,w0hN, aN).

Note that (g0N, g1N) ∈ Conf∗2(A) corresponds to [w0
−1g−1

0 g1]0 ∈ H.

Definition 5.5. The representative of α ∈ Confk(A) of the form (N,w0hN, a1N, . . . , ak−2N) is
called the canonical representative.

5.2. Edge coordinates. We have regular maps

(5.5) πij : Conf∗k(A)→ H, (g0N, . . . , gk−1N) 7→ [w0
−1g−1

i gj ]0, i 6= j.

Note that under the isomorphism H ∼= Conf∗2(A), πij takes (g0N, . . . , gk−1N) to (giN, gjN).
Since H ∼= (C∗)r, a configuration thus gives rise to r coordinates for each edge (see Figure 15)
given by the edge minors ∆wi . The following simple, but important, result illustrates the signif-
icance of the element sG.

Lemma 5.6. Let α ∈ Confk(A). If πij(α) = h then πji(α) = w0(h−1)sG.

Proof. If (giN, gjN) = (N,w0hN), then (gjN, giN) = (w0hN,N) = (N,w0kN), where k ∈ H
equals [w0

−1(w0h)−1]0 = w0(h−1)sG. This proves the result. �

By (4.9) this shows that when changing the orientation of an edge, the edge coordinates are
permuted and multiplied by a sign (see Figure 16).

Lemma 5.7. Let α ∈ Conf3(A) and let h1 = π01(α), h2 = π12(α), and h3 = π20(α). The
canonical representative of α equals

(5.6) (N,w0h1N, uw0(h1)h2sGN),

where u is an element in N− satisfying that [w0
−1u]0 = (w0(h3h1)h2)−1.

Proof. The canonical representative has the form (N,w0hN, ukN) for some h, k ∈ H, u ∈
N−. By (5.5), we have h1 = [w0

−1w0h]0 = h and h2 = [w0
−1(w0h)−1uk]0 = w0(h−1)ksG,

which together imply that k = w0(h1)h2sG, proving the first statement. For the second state-
ment, Lemma 5.6 implies that w0(h−1

3 )sG = π02(α) = [w0
−1uw0(h1)h2sG]0, and it follows that

[w0
−1u]0 = (w0(h3h1)h2)−1 as desired. �

g1N

g0N g2N
N

w0h1N

∆w1(h1)

∆wr(h1)

∆w2(h1)

N

N

w0h3N

w0h2N

∆w1(h2)
∆w2(h2)

∆wr(h2)

∆w1(h3)∆wr(h3)

∼= ∼=

∼ = g0sGN

g1N

g0N

g1N

x1

x2

xr xσG(1)

xσG(2)

xσG(r)

Figure 15. Edge coordinates. Figure 16. Changing the
orientation of an edge.
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5.3. Face coordinates. Consider the maps

(5.7) H3 → H, (h1, h2, h3)→ (w0(h3h1)h2)−1, N− ∩ w0G0 → H, u 7→ [w0
−1u]0.

The following is a restatement of Lemma 5.7.

Lemma 5.8. We have an isomorphism of varieties

(5.8) Conf3(A)→ H3 ×H N− ∩ w0G0, α 7→
(
π01(α), π12(α), π20(α), πN−(α)

)
,

where πN− is the map Conf3(A) → N− ∩ w0G0 induced by the projection B− = N−H → N−,
and ×H denotes the fiber product with respect to the maps (5.7). �

By Proposition 4.5 there exist j1 < · · · < jm−r ∈ {1, . . . ,m} such that the face minors are
∆γj1 , . . . ,∆γjm−r . We let ∆

◦
γk denote the face minor ∆γjk .

Proposition 5.9. The edge and face minors define a birational equivalence

(5.9)
∆: Conf∗3(A) ∼= H3 ×H N− ∩ w0G0 → (C∗)3r × (C∗)m−r,

(h1, h2, h3, u) 7→
(
{∆wi(h1)}ri=1, {∆wi(h2)}ri=1, {∆wi(h3)}ri=1, {∆

◦
γi(u)}m−ri=1

)
.

Proof. By definition, the edge minors ∆w0wi of u are the coordinates of [w0
−1u]0, which by

Lemma 5.7 are rational functions of h1, h2 and h3. The result now follows from Corollary 4.10.
�

By Lemma 5.6, ∆ also defines a birational equivalence (also denoted by ∆)

(5.10) ∆: Conf∗3(A)×sGkl Conf∗3(A)→ (C∗)5r × (C∗)2(m−r).

In Section 8 we shall identify the codomains with seed tori when G is A2, B2, C2 or G2.

5.4. Comparison with the Ptolemy coordinates. Using the standard root datum (as in [16])
for G = SL(n,C), the group H is the diagonal matrices, and N is the upper triangular matrices
with 1 on the diagonal. The map χωi : H → C∗ takes diag(a1, . . . , an) to a1a2 · · · ai, and the
element w0 is the counter diagonal matrix whose (n+ 1− i, i) entry is (−1)i−1.

Given a triple (g0N, g2N, g3N) of N -cosets in SL(n,C), there is a Ptolemy coordinate ct for
each triple t = (t0, t1, t2) of non-negative integers summing to n defined by

(5.11) ct = det({g0}t0 , {g1}t1 , {g2}t2),

where {g}k denotes the first k column vectors of a matrix g (see [12, 10]). The Ptolemy coordinate
ct of (N,w0h1N, uw0(h1)h2sGN) is up to a sign equal to the product (undefined terms are 1) of
χωt1

(h1), χωt2
(w0(h1)h2) and the (t2× t2) minor of u given by the rows t0 +1, . . . , t0 + t1 and the

columns 1, . . . , t1. Using the “standard” word i = tn−1 · · · t2t1, where ti = s1s2 · · · si, it follows
from Remark 4.3 that these minors are the i-minors. To summarize, the Ptolemy coordinates
are up to a sign and a monomial transformation equal to the minor coordinates for i.

5.5. The action on Conf∗3(A) by rotations.

Proposition 5.10. The rotation map rot : Conf∗3(A) → Conf∗3(A) taking (g0N, g1N, g2N) to
(g2N, g0N, g1N) corresponds to the map

(5.12) (h1, h2, h3, u) 7→
(
h3, h1, h2, h

−1
2 w0(h1)−1(Φ ◦Ψ)2(u)w0(h1)h2

)
.

under the isomorphism (5.8).

The proof uses the following technical lemmas.

Lemma 5.11. For any u ∈ N− ∩ w0G0, we have [Ψ(u)w0]0 = [w0
−1u]0.
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Proof. Let w0
−1u = yhx. We then have [w0

−1u]0 = h, and Ψ(u) = Ψ(x)hΨ(y)Ψ(w0), from
which it follows that [Ψ(u)w0]0 = h = [w0

−1u]0. �

Lemma 5.12. For any u ∈ N− ∩ w0G0, we have [w0
−1ΦΨ(u)]0 = [w0

−1u]−1
0 .

Proof. Let Ψ(u)w0 = ΦΨ(u)hx for h ∈ H, x ∈ N . Then [w0
−1u]0 = [Ψ(u)w0]0 = h and

(5.13) w0
−1ΦΨ(u) = (w0

−1Ψ(u)w0)x−1h−1 = (w0
−1Ψ(u)w0)h−1(hx−1h−1).

Hence, [w0
−1ΦΨ(u)]0 = h−1, and the result follows. �

Lemma 5.13. For any u ∈ N− ∩ w0G0, we have

(5.14) u−1N = ΨΦΨ(u)−1[w0
−1u]−1

0 sGw0N.

Proof. Suppose Ψ(u)N− = yhw0N−. We then have,

(5.15) u−1N =
(
Ψ
(
Ψ(u)N−

))−1
=
(
Ψ
(
yhw0N−

))−1
= Ψ(y)−1h−1w0N.

By (4.20), y = ΦΨ(u) and h = [Ψ(u)w0]0sG = [w0
−1u]0sG. This proves the result. �

Proof of Proposition 5.10. Let α =
(
N,w0h1N, uw0(h1)h2sGN

)
∈ Conf3(A). One has

(5.16)

α =
(
N,w0h1N, uw0(h1)h2sGN

)
=
(
u−1N , w0h1N , w0(h1)h2sGN

)
=
(
ΨΦΨ(u)−1[w0

−1u]−1
0 sGw0N,w0h1N,w0(h1)h2sGN

)
=
(
[w0
−1u]−1

0 sGw0N,ΨΦΨ(u)w0h1N,w0(h1)h2sGN
)

=
(
h−1

2 w0(h1)−1[w0
−1u]−1

0 w0N,h
−1
2 w0(h1)−1(ΦΨ)2(u)[ΨΦΨ(u)w0]0h1sGN,N

)
=
(
w0h3N,h

−1
2 w0(h1)−1(ΦΨ)2(u)w0(h1)h2w0(h3)h1sGN,N

)
.

The third equality follows from Lemma 5.13, the fifth from (4.20), and the last from Lemma 5.7,
which together with Lemmas 5.11 and 5.12 imply that

(5.17) [ΨΦΨ(u)w0]0 = [w0
−1ΦΨ(u)]0 = [w0

−1u]−1
0 = w0(h3h1)h2.

This concludes the proof. �

5.6. Conf∗4(A) and the flip. For α = (g0N, g1N, g2N, g3N) ∈ Conf∗4(A) let

(5.18)
α012 = (g0sGN, g1N, g2N), α023 = (g0N, g2N, g3N),

α123 = (g1N, g2N, g3N), α013 = (g0N, g1sGN, g2N),

so that Ψ02(α) = (α012, α023) and Ψ13(α) = (α123, α013). We wish to relate the canonical rep-
resentatives of Ψ02(α) to those of Ψ13(α). Let α120 = rot−1(α012) and α130 = rot−1(α013). We
then have

(5.19) Ψ02(α) = (rot(α120), α023), Ψ13(α) = (α123, rot(α130)).

Hence, by Proposition 5.10 it is enough to relate the canonical representatives of α120 and α023

to those of α123 and α130.
Each α ∈ Conf∗4(A) has a unique representative of the form (N, yk1N,w0k2N,Φ

−1(v)k3N).
Letting hij = πij(α) ∈ H it follows from Lemma 5.7 that this representative is given by

(5.20) α =
(
N,w0(h02)w0(h12)−1u−1N,w0h02N,Φ

−1(v)w0h03N
)
.
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In particular, we have

(5.21)
α120 =

(
w0(h02)w0(h12)−1u−1N,w0h02N, sGN) = (N,w0h12N, uw0(h12)w0(h−1

02 )sGN)

α023 = (N,w0h02N,Φ
−1(v)w0h03N) = (N,w0h02N, vw0(h02)h23sGN).

Each element in G0 also admits a factorization xyh with x ∈ N+, y ∈ N− and h ∈ H. In
other words, the identity induces an isomorphism

(5.22) ι : N− ×H ×N → N ×N− ×H.

Proposition 5.14. Let k = w0(h12)w0(h02)−1 ∈ H, and let c, d ∈ N−, and l ∈ H be elements
satisfying that ι(u, k,Φ−1(v)) = (Φ−1(c), d, l). Then l = h−1

31 h30, and we have

(5.23) α123 = (N,w0h12N, cw0(h12)h23sGN), α130 = (N,w0w0(h−1
31 )N, dh−1

31 h30sGN).

Proof. By left multiplication by Φ−1(c)−1uk = dlΦ−1(v)−1, we have

(5.24)
α =

(
N,w0(h02)w0(h12)−1u−1N,w0h02N,Φ

−1(v)w0h03N
)

=
(
dlN,N,Φ−1(c)−1w0h12N,w0w0(l)h03N

)
.

This shows that h13 = w0(l)h03, yielding the formula for l. The formulas for α123 and α130 now
follow from their definition. �

For the groups A2, B2, C2 and G2, Theorem 2.6 states that after a monomial transformation,
the minor coordinates of α012 and α023 are related to those of α123 and α013 by quiver mutations.
The example below shows the much simpler case A1 = SL(2,C). The case of SL(n,C) is treated
in [7, Sec. 10].

Example 5.15. For G = SL(2,C), sG = −I. There are no face coordinates, and the edge
coordinates πij are the Ptolemy coordinates cij = det(gi ( 1

0 ) , gj ( 1
0 )). Figure 17 shows the

corresponding coordinates in Conf∗3(A) ×sGkl Conf∗3(A). The Ptolemy coordinates satisfy the
Ptolemy relation c03c12+c01c23 = c02c13, which is equivalent to c02(−c13) = c23(−c01)+c12(−c03),
the mutation relation arising from a mutation at the middle vertex of the quiver shown on the
left in Figure 17.

g0N

g1N

g2N

g3N g1N

g2N g2N

g0sGN g0N

g1N

g1sGN

g3N

g3N

g2N

g2N

g3N

c01

c12 c23

c13

c02

c03

c02

c23

−c03−c01

c12
c12 c23

−c13

−c13

−c03−c01

c02

Figure 17. Ptolemy coordinates of a tuple and edge coordinates of its images
in Conf∗3(A)×sG02 Conf∗3(A) and Conf∗3(A)×sG13 Conf∗3(A).

6. The natural cocycle

We now show that there is an explicit one-to-one correspondence between Conf∗k(A) and
certain G-valued 1-cocycles on a truncated simplex labeling long edges by elements in w0H and
short edges by elements in N ∩G0w0. This result allows us to explicitly recover a representation
from its coordinates.
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For a CW complex X let V (X) denote the set of vertices of X and E(X) the set of oriented
edges. A G-cocycle on X is a function τ : E(X)→ G such that τ(ε1)τ(ε2) . . . τ(εl) = 1, whenever
ε1 · ε2 · · · εl is a contractible loop. The coboundary of a 0-cochain η : V (X)→ G is the G-cocycle
taking an edge from vertex v to vertex w to η(v)−1η(w).

Let ∆n denote a standard n-simplex, and let ∆
n denote the corresponding truncated simplex.

Let vij denote the vertex of ∆
n near vertex i of ∆n on the edge between i and j of ∆n. Each

edge of ∆
n is either long (from vij to vji) or short (from vij to vik).

Definition 6.1. A G-cocycle τ on ∆
n is a natural cocycle if τ(ε) ∈ N ∩G0w0 when ε is a short

edge, and τ(ε) ∈ w0H, when ε is a long edge.

Convention 6.2. Given a natural cocycle on ∆
n, we denote the labeling of the short edge from

vij to vik by βijk, and the labeling of the long edge from vij to vji by αij (see Figures 18 and 19).

Definition 6.3. Let α = (g0N, . . . , gk−1N) ∈ Conf∗k(A). The natural cocycle associated to α is
the coboundary of the 0-cochain ηα taking vij to g if (giN, gjN) = g(N,w0hN) with h ∈ H.

Note that the set of natural cocycles is a variety, and that the map taking a configuration to
its natural cocycle is an isomorphism. We wish to give an explicit formula for the edges.

α12

0

1

2

3

β1
23

α23

α13

α01

α02

α03

β0
23

β3
02

0 2

1

β0
12

β1
20

β2
01

α01 α12

α20

Figure 18. Natural cocycle
on a 3-simplex.

Figure 19. Natural cocycle
on a 2-simplex.

Lemma 6.4. Let h, k ∈ H. The natural cocycle for (N,w0hN, uksGN) has

(6.1) β2
01 = k−1ΨΦΨ(u)k.

Proof. We have β2
01 = η(v20)−1η(v21), where η is the 0-cochain from Definition 6.3. Let y =

k−1uk. By Lemma 5.13, we have y−1k−1sGN = ΨΦΨ(y)−1[w0y]−1
0 w0k

−1N . Hence,

(6.2) (uksGN,N) = uksG(N, y−1k−1sGN) = uksGΨΦΨ(y)−1(N, [w0y]−1
0 w0k

−1N),

from which it follows that η(v20) = uksGΨΦΨ(y)−1. Similarly,

(6.3) (uksGN,w0hN) = uksG(N,w0hw0(k)sGN),

so η(v21) = uksG. It follows that β2
01 = η(v20)−1η(v21) = ΨΦΨ(y) = k−1ΨΦΨ(u)k. �

Proposition 6.5. Let α = (h1, h2, h3, u) ∈ H3 ×H N− ∩ w0G0 = Conf∗3(A), and let

(6.4) u0 = u, u1 = h−1
2 w0(h1)−1(ΦΨ)2(u0)w0(h1)h2, u2 = h−1

1 w0(h3)−1(ΦΨ)2(u1)w0(h3)h1.
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The natural cocycle for α is given by

(6.5)
β2

01 = h−1
2 w0(h1)−1ΨΦΨ(u0)w0(h1)h2, β1

20 = h−1
1 w0(h3)−1ΨΦΨ(u1)w0(h3)h1

β0
12 = h−1

3 w0(h2)−1ΨΦΨ(u2)w0(h2)h3, α01 = w0h1, α12 = w0h2, α20 = w0h3.

Proof. The formula for the long edges αij is an immediate consequence of the definition, and the
formula for the short edges βijk follow from Lemma 6.4 and Proposition 5.10. �

7. Deriving explicit formulas

We now derive formulas for the rotation (Proposition 5.10) and the flip (Proposition 5.14)
in terms of the minor coordinates. Explicit computations are given for the rank two groups in
Section 8. Let N 6=− denote the open subset of N− ∩ w0G0 with non-vanishing i-minors, and let

(7.1) N i = xi((C∗)m) ∩G0w0, N ī
− = yī((C

∗)m) ∩ w0G0,

where yī(s1, . . . , sm) = yim(s1)yim−1 . . . yi1(sm). Note that the factorization of elements in N ī
− is

with respect to the opposite word ī = sim · · · si2si1 . The factorization coordinates on N i, N ī
− and

the i-minors on N 6=− define canonical birational equivalences of each of these spaces with (C∗)m.

7.1. Rotations. By Proposition 5.10 we need a formula for (ΦΨ)2 and a formula for how the
minor coordinates change under conjugation. We begin with the latter.

Lemma 7.1. For any w ∈W , ∆wωi(k−1uk) = χωi(w
−1(k−1)k)∆wωi(u).

Proof. For u ∈ wG0, one easily checks that for [w−1k−1uk]0 = w−1(k−1)k[w−1u]0. This proves
the result. �

To obtain a formula for (ΦΨ)2 first observe that

(7.2) (ΦΨ)n = (ΨΦΨ)−1 ◦ (ΨΦ)n ◦ΨΦΨ, n ∈ Z.

The basic observation below allows us to apply Theorem 4.7 to explictly compute ΨΦΨ.

Lemma 7.2. For any u ∈ N− ∩ w0G0, we have π−(ΨΦΨ(u)) = u.

Proof. Let w0
−1u = yhx. Then x = π−1

− (u), and u = w0yhx. Hence, Ψ(u) = Ψ(x)hΨ(y)w0sG,
so ΦΨ(u) = Ψ(x). This proves the result. �

Corollary 7.3. The map ΨΦΨ extends to a biregular isomorphism N 6=− → N i given explicitly
by (4.23). �.

Remark 7.4. By Proposition 6.5, this provides an explicit formula for the natural cocycle of
α ∈ Conf3(A) whenever the minor coordinates of α, rot(α) and rot2(α) are non-zero. For
G = SL(n,C) and the “standard word” (see Section 5.4) this formula agrees with the one given
in [12] via diamond coordinates.

7.2. The flip. For all u ∈ N− ∩ w0G0, we have

(7.3) u = Ψ(ΨΦ)−1ΨΦΨ(u), Φ−1(u) = (ΨΦ)−2ΨΦΨ(u).

This motivates the definition of birational equivalences

(7.4)
Γ1 : N 6=− → N ī

−, Γ2 : N 6=− → N i

u 7→ Ψ(ΨΦ)−1ΨΦΨ(u), u 7→ (ΨΦ)−2ΨΦΨ(u).
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Let f(c,d,l) denote the composition

(7.5) N 6=− ×H ×N
6=
−

(Γ1,id,Γ2) // N ī
− ×H ×N i ι // N i ×N ī

− ×H
(Γ−1

2 ,Γ−1
1 ,id)

// N 6=− ×N
6=
− ×H,

where ι is the map (5.22). Note that if u, v, k, c, d, and l are as in Proposition 5.14, then
(c, d, l) = f(c,d,l)(u, k, v). In particular, the flip is given explicitly in terms of ι and the maps
ΨΦΨ, ΨΦ and their inverses.

7.3. Formulas for ΨΦ and ι. The maps ΨΦ and ι can be computed explicitly using the
following elementary properties (see e.g. [18]):

xi(s)yj(t) = yj(t)xi(s), i 6= j(7.6)

xi(s)yi(t) = yi(
t

1 + st
)h1+st
i xi(

s

1 + st
), yi(s)xi(t) = xi(

t

1 + st
)h

1
1+st

i yi(
s

1 + st
),(7.7)

hsiyj(t) = yj(ts
−Aij )hsi , hsixj(t) = xj(ts

Aij )hsi(7.8)
xj(t)sj wB = yj(1/t)wB, w = sj1 · · · sjk , sjw reduced.(7.9)

Example 7.5. We compute ΨΦ for the group A2 using the word i = (1, 2, 1). The Cartan
matrix is

(
2 −1
−1 2

)
and we have

(7.10)

x1(a)x2(b)x1(c)s1s2s1B = x1(a)x2(b)y1(1/c)s2s1B

= x1(a)y1(1/c)y2(1/b)s1B

= y1(
1

a+ c
)h

1+a/c
1 x1(

ac

a+ c
)y2(1/b)s1B

= y1(
1

a+ c
)y2(

1

b
(1 + a/c))y1(

c

a(a+ c)
)B

proving that ΨΦ(a, b, c) = ( c
a(a+c) ,

a+c
bc ,

1
a+c).

Example 7.6. This toy example illustrates how to compute ι. Assume that A12 = −1.

(7.11)

y2(a)y1(b)x1(c)x2(d) = y2(a)x1(
c

1 + bc
)h

1
1+bc

1 y1(
b

1 + bc
)x2(d)

= x1(
c

1 + bc
)y2(a)x2(d(1 + bc))y1(b(1 + bc))h

1
1+bc

1

= x1(
c

1 + bc
)x2(

d(1 + bc)

1 + ad(1 + bc)
)y2(a(1 + ad(1 + bc)))

y1(
b(1 + bc)

1 + ad(1 + bc)
)h

1
1+bc

1 h
1

1+ad(1+bc)

2 .

8. Groups of rank 2

We now compute the functions in Section 7 explicitly for the groups A2, B2, C2 and G2.
There are two reduced words: (1, 2, 1) and (2, 1, 2) for A2, (1, 2, 1, 2) and (2, 1, 2, 1) for B2, and
(1, 2, 1, 2, 1, 2) and (2, 1, 2, 1, 2, 1) for G2. We shall always use the word starting with 1.

We use the root data from Knapp [16, Appendix C]. We identify h∗ with R2 for B2 and C2,
and with {v ∈ R3|〈v, e1 + e2 + e3〉 = 0} for A2 and G2. The ei are the standard basis vectors,
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and 〈, 〉 is the standard inner product.

(8.1)

A2 : α1 = e1 − e2, α2 = e2 − e3, ω1 = e1, ω2 = e1 + e2,

B2 : α1 = e1 − e2, α2 = e2, ω1 = e1, ω2 =
1

2
(e1 + e2),

C2 : α1 = e1 − e2, α2 = 2e2, ω1 = e1, ω2 = e1 + e2,

G2 : α1 = e1 − e2, α2 = −2e1 + e2 + e3, ω1 = −e2 + e3, ω2 = −e1 − e2 + 2e3,

Using this one easily verifies that w0(wi) = −wi for B2, C2 and G2, and that w0(wi) = −w3−i
for A2, proving that σG is trivial for B2, C2 and G2, and non-trivial for A2. The Cartan matrices
are A2 =

(
2 −1
−1 2

)
, B2 =

(
2 −1
−2 2

)
, C2 =

(
2 −2
−1 2

)
, and G2 =

(
2 −3
−1 2

)
, and one has

(8.2) sA2 = (1, 1), sB2 = (1,−1), sC2 = (−1, 1), sG2 = (1, 1)

under the identification (4.6) of H with (C∗)2.

8.0.1. The map ΨΦΨ. Using (4.7) and Remark 4.8 we obtain formulas for ΨΦΨ and its inverse.
Displayed below are ΨΦΨ(u1, . . . , um) and (ΨΨΦ)−1(t1, . . . , tm).

(8.3)

A2 : (
u2

u1u3
,
u3

u2
,

1

u3
), (

1

t1t2
,

1

t2t3
,

1

t3
)

B2 : (
u2

2

u1u3
,
u3

u2u4
,
u2

4

u3
,

1

u4
), (

1

t1t22t3
,

1

t2t3t4
,

1

t3t24
,

1

t4
)

C2 : (
u2

u1u3
,
u2

3

u2u4
,
u4

u3
,

1

u4
), (

1

t1t2t3
,

1

t2t23t4
,

1

t3t4
,

1

t4
)

G2 : (
u2

u1u3
,
u2

3

u2u4
,
u4

u3u5
,
u3

5

u4u6
,
u6

u5
,

1

u6
), (

1

t1t2t23t4t5
,

1

t2t33t
2
4t

3
5t6

,
1

t3t4t25t6
,

1

t4t35t
2
6

,
1

t5t6
,

1

t6
)

8.0.2. Formula for ΨΦ. Using the algorithm in Section 7.1 we obtain (the displayed formulas
are ΨΦ(t1, . . . , tm) and (ΨΦ)−1(s1, . . . , sm))

(8.4)

A2 : (
t3

t21 + t1t3
,
t1 + t3
t2t3

,
1

t1 + t3
), (

1

s1 + s3
,
s1 + s3

s1s2
,

s1

s1s3 + s2
3

)

B2 : (
t3t

2
4

t1α1
,

α1

t2t3t4α2
,
α2

2

α1
,

1

α2
), (

1

β1
,
β1

β2
,

β2
2

s1s2
2s3β1

,
s1s2

s4β2
),

α1 = t3t
2
4 + t1(t2 + t4)2, α2 = t2 + t4, β1 = s1 + s3, β2 = s1s2 + (s1 + s3)s4

C2 : (
t3t4
t1α1

,
α2

1

t2t23t4α2
,
α2

α1
,

1

α2
), (

1

β1
,
β2

1

β2
,

β2

s1s2s3β1
,
s2

1s2

s4β2
),

α1 = t3t4 + t1(t2 + t4), α2 = t2 + t4, β1 = s1 + s3, β2 = s2
1s2 + (s1 + s3)2s4,
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for A2, B2 and C2, while for G2, we have

(8.5)

ΨΦ(t) = (
t3t4t

2
5t6

t1α1
,

α3
1

t2t33t
2
4t

3
5t6α2

,
α2

α1α3
,
α3

3

α2α4
,
α4

α3
,

1

α4
),

(ΨΦ)−1(s) = (
1

β1
,
β3

1

β2
,
β2

β1β3
,
β3

3

β2β4
,

β4

s1s2s2
3s4s5β3

,
s3

1s
2
2s

3
3s4

s6β4
),

α1 = t4(t1t2t
2
3 + t1t

2
5t6 + t3t

2
5t6) + t1t2t6(t3 + t5)2,

α2 = t4(t2t
3
3t4 + 2t2t

3
3t6 + 3t2t

2
3t5t6 + t35t

2
6) + t2t

2
6(t3 + t5)3,

α3 = t1t2 + t1t4 + t3t4 + t1t6 + t3t6 + t5t6, α4 = t2 + t4 + t6,

β1 = s1 + s3 + s5, β2 = s6(s1 + s3 + s5)3 + s4(s1 + s3)3 + s3
1s2,

β3 = s2
1s2(s3 + s5) + (s1 + s3)2s3s4,

β4 = s2
1s2s4(s1s2s

3
3 + 3s1s3s

2
5s6 + 3s2

3s
2
5s6 + 2s1s

3
5s6 + 3s3s

3
5s6)+

s3
1s

2
2s6(s3 + s5)3 + s2

4s
3
5s6(s1 + s3)3.

8.0.3. Formula for k−1uk. For u ∈ N 6=− let ui = ∆γi(u) be the ith coordinate, and let k1 and k2

denote the coordinates of k ∈ H. Note that ∆γ1 and ∆γ2 are always edge minors, so we shall
only need formulas for (k−1uk)i for 2 < i ≤ m. These can be computed using Lemma 7.1 using
the fact that wχ∗α(t)w−1 = χ∗w(α)(t). We obtain

(8.6)

A2 : (k−1uk)3 = k2
1/k2u3

B2 : (k−1uk)3 = k2
2u3, (k−1uk)4 = k2

2/k1u4

C2 : (k−1uk)3 = k2u3, (k−1uk)4 = k2
2/k

2
1u4

G2 : (k−1uk)3 = k2u3, (k−1uk)4 = k3
2/k

3
1u4,

(k−1uk)5 = k2/k1u5, (k−1uk)6 = k2
2/k

3
1u6.

8.1. A monomial transformation. Define a monomial transformation mG : TQG
→ TQG

as
follows:

(8.7)

m∗G(aij) = aij , m∗A2
(a1) = a1

a01a12

a10

m∗B2
(a1) = a1a12, m∗B2

(a2) = a2
a21

a10
, m∗C2

(a1) = a1a12, m∗C2
(a2) = a2

a21a
2
01

a10

m∗G2
(a1) = a1a12, m∗G2

(a2) = a2
a21a

3
01

a10
, m∗G2

(a3) = a3a01a12, m∗G2
(a4) = a4

a21a
3
01

a10

We identify the codomain of the map ∆ in Proposition 5.9 with the seed torus of QG by
identifying the edge coordinates with the frozen coordinates and the face coordinates with the
non-frozen coordinates. We can now define the map M : Conf∗3(A) → TQG

in Theorem 2.2 to
be the composition of ∆ with mG. This is illustrated in Figure 20 for G = G2. Similarly, one
identifies the codomain of ∆: Conf∗3(A)×sGkl Conf∗3(A)→ (C∗)5× (C∗)2(m−2) with the seed torus
TQG∪klQG

for kl = 02 or 13.

8.2. Proof of Theorem 2.2. We wish to prove that

(8.8) µrot
G M(h01, h12, h20, u) =M

(
h20, h01, h12, (w0(h01)h12)−1(ΦΨ)2(u)w0(h01)h12

)
for all α = (h01, h12, h20, u) ∈ N− ∩ w0G0

∼= Conf∗3(A). This is simply a matter of applying
the explicit formulas above and comparing with the formula for µrot

G in Section 3.3. Clearly the
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u3

u4

u6

u5

a1

a2

a4

a3

g0N

g1N

g2N

∆

a01

a12 a12

a21

a20a02 a20a02

a01

a10 a12

a21

a1 = u1a12

a2 = u2
a21a

3
01

a10

a3 = u3a01a12

a4 = u4
a21a

3
01

a10

mG2

Figure 20. The mapM : Conf∗3(A)→ TQG2
.

frozen coordinates correspond, so we only need to check the non-frozen coordinates. We do this
for C2 and leave the other groups to the reader. Let aij and aji denote the coordinates of hij .
These are the frozen coordinates. By (3.8) the non-frozen coordinates of µrot

C2
M(α) are given by

(8.9) a′1 =
a01a02a12 + a2a20

a1
, a′2 =

a10(a01a02a12 + a2a20)2 + a2
01a02a

2
1a21

a2
1a2

.

By Lemma 5.7 we have

(8.10) (u1, u2) = [w0
−1u]0 = (w0(h20h01)h12)−1 = (

a20a01

a12
,
a02a10

a21
)

and by (8.7), a1 = u3a12 and a2 = u4
a21a2

01
a10

. Plugging these into (8.9) and using (8.10) we obtain

(8.11) a′1 =
a01a21(u2 + u1u4)

a10u3
, a′2 =

a21(u2
2 + u2

1u
2
4 + u2(u2

3 + 2u1u4))

u2
3u4

.

We now compare this to the coordinates ofM(rot(α)). Using (8.3) and (8.4) we obtain

(8.12) (ΦΨ)2(u1, u2, u3, u4) =
(
u1, u2,

u2 + u1u4

u3
,
u2(u2

2 + u2
1u

2
4 + u2(u2

3 + 2u1u4))

u2
1u

2
3u4

)
.

Hence, by (8.6) and (8.7), the non-frozen coordinates ofM(rot(α)) are

(8.13) k2
u2 + u1u4

u3
a01,

k2
2

k2
1

u2(u2
2 + u2

1u
2
4 + u2(u2

3 + 2u1u4))

u2
1u

2
3u4

a10a
2
20

a02
,

where k1 = a−1
01 a12 and k2 = a−1

10 a21 are the coordinates of k = w0(h01)h12. Using (8.10) it
follows that these equal a′1 and a′2, respectively. This proves the result.

8.3. Proof of Theorem 2.6. Let αijk be as in Section 5.6. By Theorem 2.2 and (5.19) we must
prove that

(8.14) µflip
G

(
µrot
G M(α120),M(α023)

)
=
(
M(α123), µrot

G M(α130)
)
.

As in Section 5.6 we may assume that

(8.15)
α120 = (N,w0h12N, uw0(h12)w0(h−1

02 )sGN), α023 = (N,w0h02N, vw0(h02)h23sGN)

α123 = (N,w0h12N, cw0(h12)h23sGN), α130 = (N,w0w0(h−1
31 )N, dh−1

31 h30sGN),

where (c, d, l) = f(c,d,l)(u, k, v). As in the proof of Theorem 2.2 this is simply a matter of
computing both sides of (8.14) using the explicit formulas for ΨΦ, ΨΦΨ and their inverses,
and the algorithm for computing ι. We give a detailed proof only for G = C2. Clearly, the
frozen coordinates agree, so we only need to consider the non-frozen coordinates. Let aij , ai,
āi, a0 and a∞ denote the coordinates in TQC2

∪02QC2
of
(
µrot
C2

(M(α120)
)
, α023). Note that the
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coordinates of the elements h12, h02, and h23 involved in (8.15) are (a12, a21), (a∞, a0) and
(a23, a32), respectively. As in Section 8.2 we have

(8.16)
ā1 =

a12a0(u2 + u1u4)

a21u3
, ā2 = a′2 =

a0(u2
2 + u2

1u
2
4 + u2(u2

3 + 2u1u4))

u2
3u4

a1 = v3a23, a2 = v4
a32a

2
∞

a0
,

and as in (8.10) we have

(8.17) a30 =
v1a23

a∞
, a03 =

v2a32

a0
, a01 =

u1a∞
a12

, a10 =
u2a0

a21
.

Using (3.12) we obtain that the face coordinates of µflip
G

(
µrot
G M(α120),M(α023)

)
are

(8.18)

a′1 = a23

(
u3 +

a21v3

a0
+
a0a

2
12u4(v2 + v2

3 + v1v4)

a21a2
∞v3v4

)
, a′2 =

a2
12a32u4

a21
+
a21a32a

2
∞v4

a2
0

,

ā′1 =
a0a12a23(u2 + u1u4)v1

a21a2
∞u3

+
a23u1v3

a12
,

ā′2 = a32

(a0a
2
12(u2 + u1u4)2v2

a2
21a

2
∞u

2
3v4

+
(u2(u2 + u2

3) + 2u1u2u4 + u2
1u

2
4)v2

a0u2
3u4

+

(a21a
2
∞u1u3v3v4 + a0a

2
12(u2 + u1u4)(v2 + v1v4))2

a0a2
12a

2
21a

2
∞u

2
3v

2
3v4

)
,

and the non-frozen edge coordinates a′∞ and a′0 are given by
(8.19)

a′∞ = a32

(v2

a2
0

+
a21a

2
∞(u2 + u2

3)v4

a2
0a

2
12u4

+
2u3(v2 + v1v4)

a0v3
+
u2

a21
+

a2
12u4(v2(v2 + v2

3) + 2v1v2v4 + v2
1v

2
4)

a21a2
∞v

2
3v4

)
,

a′0 = a23

(a2
∞u1 + a2

12v1

a12a2
∞

+
a21(u2 + u2

3 + u1u4)v3

a0a12u3u4
+
a0a12(u2 + u1u4)(v2 + v2

3 + v1v4)

a21a2
∞u3v3v4

)
.

We need to prove the following.

(i) The non-frozen coordinates ofM(α123) are a′1 and a′2.
(ii) The non-frozen coordinates of µrot

G (M(α130)) are ā′1 and ā′2.
(iii) The coordinates of h31 = h30l

−1 are (a′0, a
′
∞).

To compute (c, d, l) we need a formula for ι. Letting ιI = ι(−, I,−), we have ι(u, k, v) =
ιI(u, kvk

−1)k, so we only need a formula for ιI (here I ∈ H is the identity). Applying the
algorithm in Section 7.3 we obtain that if (x′, y′, h′) = ιI(y, x), then

(8.20) x′ = (
x1

α1
,
x2α

2
1

α2
,
x3α2

α1α3
,
x4α

2
3

α2α4
), y′ = (

y1α4

α5
,
y2α5α3

α4α6
,
y3α

2
6α

2
4

α5α2
3

,
y4α3

α4α6
), h′ = (

1

α3
,

1

α4
),
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where the αi are given by

(8.21)

α1 = 1 + x1(y2 + y4), α2 = 1 + x2(y3(1 + x1y4)2 + y1(1 + x1(y2 + y4))2),

α3 = 1 + x3(y2 + x2y2y3 + y4) + x1(y2 + y4 + x2x3y2y3y4),

α4 = 1 + x4

(
y3(1 + (x1 + x3)y4)2 + y1(1 + (x1 + x3)(y2 + y4))2

)
+ x2

(
y3(1 + x1y4)2+

y1(1 + x2
3x4y

2
2y3 + 2x1(y2 + y4) + x2

1(y2 + y4)2)
)

α5 = 1 + x2y3(1 + x1y4)2 + x4y3(1 + (x1 + x3)y4)2, α6 = 1 + (x1 + x3)y4.

Using this, together with the explicit formulas for ΨΦΨ, ΨΦ and their inverses given in (8.3)
and (8.4), we obtain that c, d and l are given by

(8.22)

l−1
1 =

a2
∞u1 + a2

12v1

a12a∞v1
+
a21a∞(u2 + u2

3 + u1u4)v3

a0a12u3u4v1
+
a0a12(u2 + u1u4)(v2 + v2

3 + v1v4)

a21a∞u3v1v3v4

l−1
2 =

a21

a0
+
a21a

2
∞(u2 + u2

3)v4

a0a2
12u4v2

+
2u3(v2 + v1v4)

v2v3
+
a0u2

a21v2
+
a0a

2
12u4(v2

2 + v2v
2
3 + 2v1v2v4 + v2

1v
2
4)

a21a2
∞v2v2

3v4
,

c1 =
a12v1

a∞l1
, c2 =

a21v2

a0l2
, c3 = u3 +

a21v3

a0
+
a0a

2
12u4(v2 + v2

3 + v1v4)

a21a2
∞v3v4

, c4 = u4 +
a2

21a
2
∞v4

a2
0a

2
12

,

d1 =
a∞u1

a12l1
, d2 =

a0u2

a21l2
, d3 = u3 +

a21a
2
∞(u2 + u2

3)v3

a0a2
12u4v1

+
a0u2(v2 + v2

3 + v1v4)

a21v1v3v4
,

d4 =
l21
l2

(2u3v3

v1
+
a21a

2
∞(u2 + u2

3)v2
3

a0a2
12u4v2

1

+
a0(a2

∞u2(v2 + v2
3) + a2

12u4v
2
1v4)

a21a2
∞v

2
1v4

)
.

By (8.7) the non-frozen coordinates of M(α123) are c3a23 = a′1 and c4
a32a2

∞
a0

= a′2 proving (i).
Also, by (8.17),

(8.23) h31 = h30l
−1 = (

a30

l1
,
a03

l2
) = (

v1a23

l1a∞
,
v2a32

a0l2
) = (a′0, a

′
∞),

proving (ii). To prove (iii), let bi denote the coordinates of M(α130), we have (since h13 =
w0(l)h30)

(8.24)
b01 = l−1

1 a30, b10 = l−1
2 a03, b12 = a30, b21 = a03,

b20 = a01, b02 = a10, b1 = d3b12, b2 = d4
b21b

2
01

b10
.

Plugging this into the formula (3.8) for µrot
C2

we obtain expressions for b′1 and b′2 that equal those
of ā′1 and ā′2 in (8.18). This concludes the proof.

Remark 8.1. Given coordinates on AG,S as described in Section 2.3 we get a natural cocycle
on each triangle of P . When sG is trivial, these glue together to form a natural cocycle on S,
hence a pair (ρ,D). When sG is non-trivial, the labelings of identified edges differ by sG (see
Figure 16), and we instead get a pair (ρ,D).

9. Representations of 3-manifold groups

Let M be a compact, oriented 3-manifold with boundary. Recall that ρ : π1(M) → G is
boundary-unipotent if peripheral subgroups of G map to conjugates of N , and that a decoration
of such ρ is a ρ-equivariant assignment of a coset gN ∈ A to each ideal point (boundary-
component) of the universal cover of M . A decorated representation is a pair (ρ,D), where ρ
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is a boundary-unipotent and D is a decoration of ρ. Note that G acts on the set of decorated
representations by g(ρ,D) = (gρg−1, gD). For more details on decorations, we refer to [12].
Unless otherwise stated G denotes one of the groups A2, B2, C2 or G2.

9.1. Generic configurations. We shall consider a notion of genericity for configurations, which
is slightly finer than that of sufficiently generic (Definition 5.1).

Definition 9.1. An element α ∈ Conf∗3(A) is generic if the minor coordinates of α, rot(α), and
rot2(α) are all non-zero.

The set Confgen
3 of generic configurations in Conf∗3(A) is isomorphic to a Zariski open subset

of TQG
. Note that µrot

G is an isomorphism (not just a birational equivalence) on this subset.

Definition 9.2. The set Confgen
4 (A) of generic configurations in Conf∗4(A) is the largest Zariski

open subset U of Conf∗4(A) such that Ψkl(U) ∈ Confgen
3 (A) ×kl Confgen

3 (A) for kl = 02 or 13,
and such that µflip

G defines an isomorphism from Ψ02(U) to Ψ13(U).

The formulas in Section 3.3 provide explicit defining equations for the variety Confgen
4 (A), and

Proposition 6.5 provides an explicit formula for the natural cocycle.

Example 9.3. Let G = C2. Given α ∈ Conf∗4(A), the simplicial boundary map εi in (2.4)
induces configurations on each of the faces with coordinates given by the map M. We denote
the coordinates on the ith face by f1,i and f2,i, and the coordinates on the edges by aij (see
Figure 21). It now follows from (3.12) that the coordinates satisfy

(9.1)
a20z1 = a32f

2
1,3 + f2,1f2,3, a02f1,2 = a01f1,1 − a30f1,3, f1,1z2 = −f2,1f1,2 + a03a23fa,3,

f2,1f2,2 = a03z1 + z2
2 , f1,3z3 = z1 + a12z2, f2,0f2,3 = a10a

2
12a32 + a21z1,

a13z1 = f2,0f2,2 + a10z
2
3 , a31z2 = a23f2,2 − f1,2z3, f1,0z3 = a12a13a23 + f2,0a31

The ideal generated by these relations defines the Zariski closure of Confgen
4 (A) for C2.

g0N

g1N

g2N

g3N

−a20

f1,3

f2,3

a02 a20

a02

f1,1

f2,1

a03

a30

a01

a10

a12

a21 a23

a23
f1,0

f2,0

a13 a31

−a31
a13

f1,2
f2,2

a12

a21 a23

a32

a03

a30

a01

a10

Figure 21. Coordinates on the faces of a simplex.

9.2. Generic decorations and the Ptolemy variety. Let T be a topological ideal triangu-
lation of M . We assume for simplicity that the triangulation is ordered, i.e. that we have fixed
a vertex ordering of each simplex, which is respected by the face pairings. For more on ordered
triangulations, see e.g. [10].

A decorated representation (ρ,D) associates a quadruple of affine flags to each 3-simplex of
T . We refer to the collection of such as the associated configurations.
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Definition 9.4. A decoration of a boundary-unipotent representation ρ is generic if the associ-
ated configurations are in Confgen

4 (A).

Remark 9.5. Note that this notion depends on T .

The triangulation T defines a category J with an object for each k-simplex and a morphism
for each inclusion of a k-simplex in an l-simplex. For k = 1, 2, let Confgen

k (A) = Conf∗k(A).

Definition 9.6. The Ptolemy variety PG(T ) is the limit of the functor from J to affine varieties
taking a k-cell to Confgen

k (A), and an inclusion onto the ith face to the face map εi in (2.4).

Informally, the Ptolemy variety is the variety built from copies of Confgen
4 (A) by gluing them

together using the gluing pattern determined by the triangulation, i.e. if two faces are identified,
the corresponding configuration spaces are identified as well. Tautologically, we have a one-to-
one correspondence between points in the Ptolemy variety and generically decorated boundary-
unipotent representations, i.e. (2.8) holds. The natural cocycle provides an explicit formula for
this correspondence.

Remark 9.7. One could also consider a Ptolemy variety by gluing together copies of Conf∗4(A).
However, we don’t have explicit defining equations for this variety.

9.3. Obstruction classes. As mentioned earlier, there are interesting boundary-unipotent rep-
resentations in G/〈sG〉 that don’t have boundary-unipotent lifts to G. The obstruction is a class
in H2(M,∂M ;Z/2Z) = H2(M̂ ;Z/2Z), where M̂ is the space obtained from M by collapsing
each boundary component to a point. The theory of obstruction classes developed in [12] for
SL(n,C) (see [11] for a summary when n = 2) has a natural analogue for G. The theory is an
elementary generalization of the SL(n,C) case, so we only sketch it.

Fix an ordered triangulation T . This determines a ∆-complex structure (as in Hatcher [13])
on M̂ . Let C∗(M̂ ;Z/2Z) be the simplicial complex of Z/2Z-valued cochains, and let σ ∈
C2(M̂ ;Z/2Z) be a cocycle. The restriction σs of σ to a 3-simplex ∆s of T is a coboundary,
so we may represent σ by a collection ηs ∈ C1(∆s;Z/2Z) such that δ(ηs) = σs. Note that if a
face f of ∆s is identified with a face f ′ of ∆s′ , then τf,f ′ = ηs|f (ηs′|f ′)

−1 is a cocycle on ∆2, a
standard simplex canonically identified with f and f ′. Since every such is a coboundary, it is
either trivial, or there exists a unique j = jf,f ′ ∈ {0, 1, 2} such that τf,f ′ is the coboundary of
the 0-cochain on ∆2 taking the jth vertex to −1 ∈ Z/2Z (see Figure 22). We can now define
the Ptolemy variety P σ(T ) to be the variety obtained by gluing together copies of Confgen

4 (A)
in such a way that if two faces f and f ′ are identified, the corresponding copies of Confgen

3 (A)
are identified, not by the identity, but via the map κj = κjf,f ′ , replacing gjN by gjsGN (see
Figure 22). Note that the effect of κj on the natural cocycle is to leave all three short edges and
the long edge opposite j fixed, and to multiply the two long edges extending to j by sG.

One now checks that up to a canonical isomorphism P σG(T ) only depends on the cohomology
class of σ, and that the set Z1(M̂ ;Z/2Z) of 1-cocycles acts on P σG(T ) with orbits corresponding
to decorated boundary-unipotent G/〈sG〉-representations. This proves (2.9).

9.4. The reduced Ptolemy variety. If M has a single boundary component, the action of H
on Confgen

k (A) where h ∈ H acts by replacing each coset giN by gihN descends to an action on
PG(T ). More generally, if M has c boundary-components, we get an action by Hc. This action
is also defined for P σG(T ). We refer to the quotients as reduced Ptolemy varieties, and we denote
the quotients by PG(T )red and P σG(T )red, respectively.
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∆s ∆s′

∆2

f
f ′

−

−

−−
−
−

κ2

g0N

g1N

g2Ng0N

g1N

g2sC2N

a12

a1
a2 −a1

a2

a02 a20

a01

a10

a21

a02 −a20

a01

a10 −a12

a21

Figure 22. ηs, ηs′ and ηs|f (ηs′|f ′)
−1. Figure 23. Effect of κ2 on

the coordinates.

9.5. Explicit computations for the figure eight not complement. Let M be the figure
eight knot complement, and let T be the standard ideal triangulation of M with two ideal
simplices. Figure 24 shows this triangulation together with the edge coordinates for G = C2 (the
face coordinates are not shown).

0

1

2

3

0

1

2

3

a

b

cd
x

−x

y

y

z

w

x

y z

w−x
yx

y

w

−z y

x

z
w −z

w
−x

y

zw

z

w

w−z y
x

Figure 24. Ordered triangulation of M .

Using the explicit relations in (9.1) we obtain that the Zariski closure of PC2(T ) is given by

(9.2)

f2,1f2,3 + f2
1,3w − z1,0y, f1,2x− f1,1z − f1,3z, z2,0f1,1 + f2,1f1,2 − f1,3wz,

z2
2,0 − f2,1f2,2 + z1,0w, z1,0 − z3,0f1,3 + z2,0x, f2,0f2,3 − w2x2 − z1,0y,

f2,0f2,2 + z2
3,0w − z1,0y, z3,0f1,2 − z2,0x− f2,2z, z3,0f1,0 + f2,0x− xyz,

f2,1f2,3 − z1,1w + f2
1,1y, xf1,1 + f1,3x− f1,0z, z2,1f1,3 + f1,0f2,3 − f1,1xy,

z2
2,1 − f2,0f2,3 + z1,1y, z1,1 − z3,1f1,1 + z2,1z, f2,1f2,2 − z1,1w − y2z2,

f2,0f2,2 − z1,1w + z2
3,1y, z3,1f1,0 − f2,0x− z2,1z, z3,1f1,2 + f2,2z − wxz.

A computation using Magma [3] shows that there are no solutions where all coordinates are
non-zero, and where all rotations of all faces are well defined. Hence, PC2(T ) is empty.

A simple computations shows that H2(M̂ ;Z/2Z) = Z/2Z, and that the generator σ is rep-
resented by the cocycle taking the faces paired by b and c to −1. The Zariski closure of the
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Ptolemy variety P σG(T ) is given by

(9.3)

f2,1f2,3 + f2
1,3w − z1,0y, f1,2x− f1,1z − f1,3z, z2,0f1,1 + f2,1f1,2 + f1,3wz,

z2
2,0 − f2,1f2,2 + z1,0w, z1,0 − z3,0f1,3 + z2,0x, f2,0f2,3 − w2x2 − z1,0y,

f2,0f2,2 + z2
3,0w − z1,0y, z3,0f1,2 − z2,0x+ f2,2z, z3,0f1,0 + f2,0x+ xyz,

f2,1f2,3 − z1,1w + f2
1,1y, xf1,1 + f1,3x− f1,0z, z2,1f1,3 − f1,0f2,3 + f1,1xy,

z2
2,1 − f2,0f2,3 + z1,1y, z1,1 + z3,1f1,1 + z2,1z, f2,1f2,2 − z1,1w − y2z2,

f2,0f2,2 − z1,1w + z2
3,1y, z3,1f1,0 + f2,0x+ z2,1z, z3,1f1,2 + f2,2z − wxz.

One easily checks that the action by an element (k1, k2) ∈ H multiplies the coordinates f1,i and
f2,i by k2

1k2 and k2
1k

2
2, respectively, so we may add the additional relations f1,0 = 1 and f2,0 = 1

to obtain the reduced Ptolemy variety P σG(T )red. A Magma computation shows that there are
two zero-dimensional components in P σG(T )red. One is defined over Q(

√
−3) and given by

(9.4)

f1,0 = f2,0 = f1,2 = −f2,3 = 1, f1,1 =
1

2
(−1 +

√
−3), f2,1 = −f1,2 = −f1,3 =

1

2
(1 +

√
−3),

x =
1

3
(1 +

√
−3), y =

3

8
(−1 +

√
−3), z = −1

3
(1 +

√
−3), w =

3

4
.

The other component is defined over Q(ω), with ω defined in (2.13), and is given by

(9.5)

f1,0 = f2,0 = 1, f1,1 = −3ω5

16
+

3ω4

8
− 7ω3

16
+

7ω2

8
− 15ω

8
+

3

2
,

f2,1 =
ω4

2
− ω3

2
+ ω2 − 2ω + 3, f1,2 = −3ω5

16
− ω4

8
+
ω3

16
+

3ω2

8
− 3ω

8
− 3

2
,

f2,2 = −ω
4

2
+
ω3

2
− ω2 + 2ω − 3, f1,3 =

ω5

16
− ω4

8
+

5ω3

16
− ω2

8
+

5ω

8
− 1

2
,

x =
3ω5

32
− 3ω4

16
+

7ω3

32
− 11ω2

16
+

11ω

16
− 1

4
, y = −ω

5

4
+

3ω4

8
− 5ω3

8
+

3ω2

2
− 5ω

4
+ 1,

z =
ω5

64
+

3ω4

32
− 3ω3

64
+

3ω2

32
− 15ω

32
+

9

8
, w = −5ω5

16
+
ω4

2
− 11ω3

16
+

9ω2

8
− 15ω

8
+

3

2
.

Remark 9.8. The reduced Ptolemy variety P σB2
(T )red also has two components of degree 2 and

6 defined over Q(
√
−3) and Q(ω), respectively. This is, of course, not surprising since B2 and

C2 are isomorphic. We have not been able to explicitly compute the Ptolemy variety for G2.

9.6. Recovering the representations. One can explicitly recover the representation corre-
sponding to a point in the Ptolemy variety using the natural cocycle. As described in [22,
Sec. 4.1] the fundamental group of the figure eight knot complement has a presentation of the
form

(9.6) 〈a, b, c
∣∣ ca−1bc−1a, ab−1c−1b〉,

where a, b, and c are the face pairings in Figure 24. This presentation is isomorphic to the
presentation (2.11) via the map taking x1 to c and x2 to ab−1. Let αij,s and βijk,s denote the
labelings of the natural cocycle associated to simplex s. As in [22, Sec. 3.5.1], the representation
is given by

(9.7) a = (β2
31,0α23,0β

3
12,0)−1, b = (β3

01,0)−1(β2
30,1)−1α23,1, c = β3

12,0β
3
12,1.
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The formulas differ slightly from those of [22] due to the fact that we are using an ordered
triangulation. Using the Serre generators for sp(4,C) given in Knapp [16], we obtain

(9.8) x1(t) =


1 t 0 0
0 1 0 0
0 0 1 0
0 0 −t 1

 , x2(t) =


1 0 0 0
0 1 0 t
0 0 1 0
0 0 0 1

 ,
and that ht1 = diag(t, t−1, t−1, t) and ht2 = diag(1, t, 1, t−1). Also, sC2 = −I, and w0 =

(
0 I
−I 0

)
.

Using this, we can now recover the natural cocycle explicitly from the coordinates, and we obtain
the formulas in Section 2.4.

Acknowledgment. The author wishes to thank Matthias Goerner, Stavros Garoufalidis, and
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