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Abstract

Given a braid presentation σ of a hyperbolic knot K, Hikami and Inoue consider a system
of polynomial equations arising from a sequence of cluster mutations determined by σ.
They show that any solution gives rise to shape variables and thus determines a boundary-
parabolic PSL(2,C)-representation of π1(S3\K). They conjecture the existence of a solu-
tion corresponding to the geometric representation. We show that a boundary-parabolic
representation ρ arises from a solution if and only if the length of σ modulo 2 equals the
obstruction to lifting ρ to a boundary-parabolic SL(2,C)-representation (an element in
Z2). In particular, the Hikami-Inoue conjecture holds if and only if the length of σ is
odd. This can always be achieved by adding a kink to the braid if necessary. We also
explicitly construct the solution corresponding to a boundary-parabolic representation
given in the Wirtinger presentation of π1(S3 \K).

Keywords: Hikami-Inoue conjecture, Ptolemy variety, braid presentation, hyperbolic
knot, boundary-parabolic representation, cluster coordinates.
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1. Introduction

Let D be a braid of length n and width m. Hikami and Inoue [6] introduced n + 1
cluster variables xi = (xi1, · · · , xi3m+1), 1 ≤ i ≤ n+ 1, where two consecutive variables xi

and xi+1 are related as follows. If D has a braid group presentation σε1k1σ
ε2
k2
· · ·σεnkn (here

σki is the standard generator of the m-braid group and εi = ±1), then we have

x2 = Rε1k1(x1), x3 = Rε2k2(x2), · · · , xn+1 = Rεnkn(xn)
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where R±
k is the operator defined by

R±
k (x1, · · · , x3m+1) = (x1, · · · , x3k−3, R

±(x3k−2, · · · , x3k+4), x3k+5, · · · , x3m+1).

We refer to the equations (10) and (11) for the definition of the operator R±.
The initial cluster variable x1 ∈ C3m+1 is called a solution if x1 = xn+1. Hikami

and Inoue showed that a solution x1 induces a boundary-parabolic representation ρx1 :
π1(S3 \ K) → PSL(2,C), where K is the knot represented by the braid D. Assuming
the following conjecture, they used these variables xi to compute the volume and Chern-
Simons invariant of S3 \K.

Conjecture 1.1. [6, Conjecture 3.2] Let D be a braid representing a hyperbolic knot K.
Then there exists a solution x1 such that the induced representation ρx1 : π1(S3 \K)→
PSL(2,C) is geometric, i.e., discrete and faithful.

The main purpose of our paper is to analyze this conjecture. In particular we prove
the following, which is a consequence of the more general results Theorems 1.4 and 1.5
below.

Theorem 1.2. Conjecture 1.1 holds if and only if the length of the braid is odd.

Note that one can always make the braid length odd by adding a kink if necessary.
Let M be a compact 3-manifold with boundary.

Definition 1.3. A representation ρ : π1(M) → G, where G is either PSL(2,C) or
SL(2,C), is boundary-parabolic if it maps peripheral subgroups to conjugates of the sub-
group P of G consisting of upper triangular matrices with 1 on the diagonal. We shall
sometimes call such a (G,P )-representation.

A representation π1(M) → PSL(2,C) may or may not lift to SL(2,C) and the ob-
struction to lifting is a class in H2(M ; {±1}). Also, a boundary-parabolic PSL(2,C)-
representation may lift to an SL(2,C)-representation which is not boundary-parabolic.
The obstruction to lifting a boundary-parabolic PSL(2,C)-representation ρ to a boundary-
parabolic SL(2,C)-representation is a class in H2(M,∂M, {±1}) called the obstruction
class of ρ [4, 3]. The image of this class in H2(M ; {±1}) is the obstruction to lifting ρ
to SL(2,C). If M = S3 \ ν(K) is a knot exterior of K in S3 (here ν(K) denotes a small
open regular neighborhood of K), then H2(M,∂M ; {±1}) ' {±1} so the obstruction
class of ρ can be viewed as an element of {±1}.

Theorem 1.4. [Theorem 3.1] Let D be a braid of length n representing a knot K (not
necessarily hyperbolic). Then the obstruction class of ρx1 : π1(S3 \ ν(K)) → PSL(2,C)
induced from a solution x1 is given by (−1)n.

The obstruction class of the geometric representation of a hyperbolic knot is non-
trivial. This follows from the fact that any lift of the geometric representation maps a
longitude to an element with trace −2 (see e.g. [1], [9, §3.2] and also Proposition 2.2
below). Hence, Theorem 1.4 shows that having odd braid length is necessary for Conjec-
ture 1.1 to hold. The fact that this is also sufficient follows from the result below, which
is proved in Section 4.
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Theorem 1.5. Let D be a braid of length n representing a knot K (not necessarily
hyperbolic). Let ρ : π1(S3 \ ν(K))→ PSL(2,C) be a boundary-parabolic representation
whose obstruction class is (−1)n. Then there exists a solution x1 such that the induced
representation ρx1 coincides with ρ up to conjugation.

We stress that the solution can be constructed explicitly when ρ is given using the
Wirtinger presentation of π1. This uses techniques developed in [2] and [13].

The paper is organized as follows. In Section 2, we give a review on Ptolemy varieties
with obstruction classes. In Section 3, we give a short review on the Hikami-Inoue
variables and prove Theorem 1.4. In Section 4, we present an explicit way to compute a
solution described in Theorem 1.5 when a boundary-parabolic representation is given in
the Wirtinger presentation of π1.

1.1. Acknowledgements

Christian Zickert was supported by NSF grant DMS-1711405.

2. Ptolemy varieties with obstruction class

Let M be an oriented compact 3-manifold with non-empty boundary. We fix an
ideal triangulation T of the interior of M . This endows M with a decomposition into
truncated tetrahedra whose triangular faces triangulate ∂M (see Figure 1). We denote
by M i or ∂M i the set of the oriented i-cells (unoriented when i = 0). For an oriented
1-cell e, we let −e denote e with its opposite orientation.

2.1. Obstruction classes

For a group G the set Ci(M ;G) of all set maps from M i to G forms a group with
the operation naturally induced from G. We call σ ∈ C1(M ;G) a G-cocycle if it satisfies

(i) σ(e)σ(−e) = 1 for all e ∈M1;

(ii) σ(e1)σ(e2) · · ·σ(em) = 1 for each face f of M where e1, · · · , em are the boundary
edges of the face in the cyclic order determined by a choice of orientation of f .

The set Z1(M ;G) of all G-cocycles admits a C0(M ;G)-action defined as follows.

Z1(M ;G)× C0(M ;G)→ Z1(M ;G), (σ, τ) 7→ σ · τ

where σ · τ : M1 → G is given by (σ · τ)(e) = τ(v)−1σ(e)τ(w) for e ∈M1, where v and w
are the initial and terminal vertices of e, respectively. The following fact is well-known
(see e.g. [14, 10]).

Proposition 2.1. The orbit space H1(M ;G) := Z1(M ;G)/C0(M ;G) has a natural
bijection with the set of all conjugacy classes of representations ρ : π1(M)→ G.

Let G be either SL(2,C) or PSL(2,C) and P be the subgroup of G consisting of the
upper triangular matrices with ones in the diagonal. We denote by Ci(M,∂M ;G,P ) the
subset of Ci(M ;G) consisting of elements σ ∈ Ci(M ;G) satisfying σ(x) ∈ P for all x ∈
∂M i. We let Z1(M,∂M ;G,P ) = Z1(M ;G)∩C1(M,∂M ;G,P ) and H1(M,∂M ;G,P ) =
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Z1(M,∂M ;G,P )/C0(M,∂M ;G,P ). An element of Z1(M,∂M ;G,P ) is called a (G,P )-
cocycle. One easily checks (see e.g. [14]) that every (G,P )-representation can be repre-
sented by a (G,P )-cocycle. In fact, H1(M,∂M ;G,P ) is in natural bijection with the set
of (conjugacy classes of) so-called decorated (G,P )-representations (see e.g. [14, 4]), but
we shall not need this here.

From the short exact sequence of groups 1→ {±1} → SL(2,C)→ PSL(2,C)→ 1, we
obtain exact sequences (the standard proof of exactness still works in low degree even
though the terms are only sets, not groups)

H1(M ; SL(2,C))→ H1(M ; PSL(2,C))→ H2(M ; {±1}) and (1)

H1(M,∂M ; SL(2,C), P )→ H1(M,∂M ; PSL(2,C), P )
δ→ H2(M,∂M ; {±1}) (2)

with the connecting map δ. In particular, the sequence (2) tells us that a (PSL(2,C), P )-
representation ρ admits a (SL(2,C), P )-lifting if and only if δ(ρ) ∈ H2(M,∂M ; {±1})
vanishes, where ρ is viewed as a (PSL(2,C), P )-cocycle. The element δ(ρ) is called the
obstruction class of ρ. It does not depend on the choice of a (PSL(2,C), P )-cocycle
representing ρ. Recall that we have the long exact sequence

H1(M ; {±1})→ H1(∂M ; {±1})→ H2(M,∂M ; {±1})→ H2(M ; {±1}).

It thus follows that if ρ lifts to SL(2,C) (e.g. if H2(M ; {±1}) = 0), then the obstruction
class of ρ in H2(M,∂M ; {±1}) can be viewed as an element of Coker(H1(M ; {±1}) →
H1(∂M ; {±1})). In particular, if M is a knot exterior in the 3-sphere S3, the obstruction
class of ρ is determined by the lift of the longitude. More precisely, the following holds.

Proposition 2.2. Let M be a knot exterior in S3 and let ρ : π1(M)→ PSL(2,C) be a
(PSL(2,C), P )-representation. The obstruction class of ρ, viewed as an element of {±1},
coincides with half of Tr(ρ̃(λ)) where ρ̃ : π1(M)→ SL(2,C) is a SL(2,C)-lifting of ρ and
λ is a canonical longitude of the knot.

Proof. Considering any Wirtinger presenation of π1(M), it is easy to check that ρ has
only two SL(2,C)-liftings ρ̃+ and ρ̃− : π1(M) → SL(2,C) such that Tr(ρ̃+(µ)) = 2
and Tr(ρ̃−(µ)) = −2, respectively. Here µ is a merdian of the knot. Since π1(∂M) is
an abelian group generated by µ and the longitude λ, ρ admits a (SL(2,C), P )-lifting
if and only if Tr(ρ̃+(λ)) = 2. Therefore, by definition, the obstruction class δ(ρ) ∈
{±1} coincides with half of Tr(ρ̃+(λ)). On the other hand, the canonical longitude λ
is contained in the commutator subgroup of π1(M). Thus it should be expressed in
Wirtinger generators of even length and we have ρ̃+(λ) = ρ̃−(λ).

2.2. Ptolemy varieties

Recall that M is a compact 3-manifold with an ideal triangulation T of its interior.
The third author with Garoufalidis and Thurston [4] (see also [14]) gave an efficient
parametrization of (PSL(2,C), P )-representations with a given obstruction class. Pre-
cisely, for σ ∈ Z2(M,∂M ; {±1}) the Ptolemy variety Pσ(T) with obstruction cocycle σ
is defined by the set of all set maps c : T1 → C \ {0} satisfying −c(e) = c(−e) for all
e ∈ T1 and

σ2 c(l02)c(l13) = σ3 c(l03)c(l12) + σ1 c(l01)c(l23) (3)
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for each ideal tetrahedron ∆ (with vertices {0, 1, 2, 3}) of T, where lij is the oriented
edge of ∆ going from vertex i to vertex j, and σi is the σ-value on the hexagonal face
opposite to the vertex i. See Figure 1. Here T1 denotes the set of oriented 1-cells of T.

l01

l03

l13

l23

l12
l02

0
1

2

3

σ2

σ0

σ3

σ1

s301

s013 s130

l01

Figure 1: A truncated tetrahedron.

Each point c of Pσ(T) corresponds to a (PSL(2,C), P )-cocycle Φc such that δ(Φc) =
[σ] ∈ H2(M,∂M ; {±1}); hence it induces a (PSL(2,C), P )-representation ρc : π1(M)→
PSL(2,C) whose obstruction class is [σ]. This cocycle is given explicitly from the Ptolemy
coordinates c(lij) as follows:

Φc(lij) = ±
(

0 −c(lij)−1

c(lij) 0

)
, Φc(s

k
ij) = ±

(
1 −εl c(lji)

c(lik)c(lkj)

0 1

)
.

Here skij ∈ ∂M1 is the edge contained in the face [i, j, k] and parallel to lij ; see Figure
1. The cocycle condition (ii) is then satisfied for the hexagonal faces, and the Ptolemy
relation (3) ensures that it is also satisfied for the triangular faces. We refer [4, §9] for
details.

Now let us consider the map

d : Z1(∂M ; {±1})→ Z2(M,∂M ; {±1}), ε 7→ d(ε) (4)

defined by d(ε)-value on a face of M by multiplying ε-values of all edges of ∂M that
are contained in the face. Note that it induces the usual map d∗ : H1(∂M ; {±1}) →
H2(M,∂M ; {±1}).

Proposition 2.3. Let ε ∈ Z1(∂M ; {±1}). Then any (PSL(2,C), P )-representation ρc
induced from c ∈ P d(ε)(T) has a SL(2,C)-lifting ρ̃c : π1(M)→ SL(2,C) satisfying

ρ̃c(γ) =

(
ε(γ) ∗

0 ε(γ)

)
(5)

for all γ ∈ π1(∂M) up to conjugation, where ε : π1(∂M) → {±1} is the homomorphism
induced from the cocycle ε.

Proof. Let Φ̃c ∈ C1(M ; SL(2,C)) be a lift of Φc satisfying that

Φ̃c(l) =

(
0 −c(l)−1

c(l) 0

)
, Φ̃c(s) =

(
1 ∗
0 1

)
(6)
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for all l ∈M1 \ ∂M1 and s ∈ ∂M1. One can check that Φ̃c satisfies the SL(2,C)-cocycle
condition for the triangular faces (but may not for all faces of M). Let ε̃ ∈ C1(M ; {±1})
be the trivial extension of ε, i.e., ε̃(e) := ε(e) if e ∈ ∂M1 and otherwise ε̃(e) := 1. Then

by definition ε̃ · Φ̃c : M1 → SL(2,C) is a SL(2,C)-cocycle which satisfies

(ε̃ · Φ̃c)(e) =

(
ε(e) ∗

0 ε(e)

)
for all e ∈ ∂M . Letting ρ̃c be a representation induced from the SL(2,C)-cocycle ε̃ · Φ̃c,
the proposition follows.

Combining Propositions 2.2 and 2.3, we obtain:

Theorem 2.4. Let M be a knot exterior in S3 and let ε ∈ Z1(∂M ; {±1}). Then any
(PSL(2,C), P )-representation ρc induced from c ∈ P d(ε)(T) has the obstruction class
ε(λ) ∈ {±1}, where ε : π1(∂M) → {±1} is the induced homomorphism and λ is the
canonical longitude of the knot.

3. The Hikami-Inoue cluster variables

3.1. The octahedral decomposition of a knot complement with two points removed

Let K ⊂ S3 be a knot and let ν(K ∪ {p, q}) denote a tubular neigborhood of the
union of K with two points p 6= q ∈ S3 not in K. Whenever we choose a knot diagram
representing K, we have a decomposition of the space M = S3 \ν (K∪{p, q}) into blocks
each of which is a cube with two cylinders (whose core is the knot) removed. See Figure
2. Note that M is a 3-manifold with 3 boundary components (two spheres and a torus)
whose interior is homeomorphic to S3 \ (K ∪{p, q}). Now consider two quadrilaterals Q1

and Q2 in each block as in Figure 2 and collapse them horizontally so that their vertical
edges are respectively identified. We call the resulting object a pinched block.

Q1

Q2

x1
x7

x̃6

x̃2

x4 x6x3

x2
x5

x̃4

x̃3

x̃5

Figure 2: A pinched block

On the other hand, a pinched block can also be obtained from a truncated octahedron
by identifying two pairs of edges as in Figure 3 (right). Therefore, one can obtain M by
gluing truncated octahedra, and it thus follows that the interior of M can be decomposed
into ideal octahedra (one per crossing). We denote this octahedral decomposition of
S3 \ (K ∪ {p, q}) by O. It is due to Dylan Thuston [11] (see also [12]).
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=

x2 x3

x1

x̃6

x4

x5 x6

x7
x̃4

x̃5

x̃3 x̃2

Figure 3: A truncated octahedron

3.2. The Hikami-Inoue cluster variables

An ideal octahedron as in Figure 3 has 12 edges each of which corresponds to a
vertical edge of a cube in Figure 2. We may label those edges by x1, · · · , x7, x̃1, · · · , x̃7
as in Figure 4 with the obvious identifications x1 = x̃1 and x7 = x̃7. As indicated in
Figure 4 (left) we shall regard the edges xi as being above a crossing, and the edges x̃i
as below the crossing.

Assigning a complex-valued variable to each of the edges x1, · · · , x7, x̃1, · · · , x̃7 with
the same label as the edge itself, Hikami and Inoue [5, §2.2] consider the equation
(x̃1, · · · , x̃7) = R±(x1, · · · , x7) where R± is a certain operator defined by rational polyno-
mial equations. As we shall see in Section 3.3, these equations are equivalent to Ptolemy
relations for a particular obstruction cocycle.

x1

x3

x2

x4 x6

x5 x7

x̃1 x̃3

x̃2 x̃4

x̃6

x̃5

x̃7

x̃1 = x1

x̃7 = x7

x2

x3

x5

x6x4 x7x1

x̃2

x̃3

x̃5

x̃6

x̃4 x̃7x̃1

=

Figure 4: Edges of an octahedron at a crossing

Now suppose the knot diagram is given by a braid D with presentation σε1k1 · · ·σ
εn
kn

.
(Here σki is the standard generator of the m-braid group and εi = ±1.) Similar to the
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edge-labeling described in the previous paragraph, we label the oriented edges of the
octahedral decomposition O as follows:

1. Draw n+ 1 imaginary horizontal lines on the braid D so that there is only a single
crossing between two consecutive lines (see Figures 5 and 10).

2. As in Figure 4 (left), whenever a horizontal line meets the braid D there are two
corresponding edges, and whenever a horizontal line meets a region of (the closure
of) D, there is one corresponding edge. Since each of the horizontal lines meets the
braid m times and the regions m+ 1 times, it corresponds to 3m+ 1 edges of O.

3. For the i-th horizontal line we orient the corresponding edges and denote them by
xi1, · · · , xi3m+1 as in Figure 5, and define xi = (xi1, · · · , xi3m+1).

· · ·

xi1
xi3k−2

xi3k

xi3k−1

xi3k+1 xi3k+3

xi3k+2
· · ·

xi3k+4 xi3m+1

xi+1
1

xi+1
3k−2

xi+1
3k

xi+1
3k+1

xi+1
3k+3

xi+1
3k+4 xi+1

3m+1xi+1
3k−1

xi+1
3k+2

xi

xi+1

Figure 5: Edges of O around the i-th level of a braid

Note that there are many overlapped labelings; for instance, in Figure 5, we have xij =

xi+1
j for j = 1, · · · , 3k − 2 and j = 3k + 4, · · · , 3m+ 1.

We again assign a complex-valued variable to each oriented edge of O and denote
the variable by the same as the edge itself. Hikami and Inoue [5] relate the variables
xi = (xi1, · · · , xi3m+1) and xi+1 = (xi+1

1 , · · · , xi+1
3m+1) by the equation

xi+1 = Rεiki(x
i)

for 1 ≤ i ≤ n. Recall that the operator R±
k is defined by

R±
k (x1, · · · , x3m+1) = (x1, · · · , x3k−3, R

±(x3k−2, · · · , x3k+4), x3k+5, · · · , x3m+1). (7)

Note that R±
k only affects the variables above and below the k-th crossing.

An initial variable x1 is called a solution if x1 = xn+1. Whenever we have a solution
x1 ∈ C3m+1, we shall define the set map

cx1 : O1 → C

by assigning the variable xij to the oriented edge of O labeled by the same name. The
fact that this assignment respects the face identifications in O follows directly from the
definitions of R±

k and R±.
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3.3. The obstruction cocycle

Let T be the ideal triangulation of S3 \ (K ∪ {p, q}) obtained by decomposing each
octahedron of O into 5 ideal tetrahedra as in Figure 3 (left). As explained earlier this
induces a triangulation of the boundary ofM . We now define a cocycle ε ∈ Z1(∂M ; {±1})
on ∂M by assigning signs to the short edges of the truncated tetrahedra. Note that each
short edge either lies in the top/bottom of a truncated octahedron, or on one of the sides.
We shall call the edges top/bottom-edges or side-edges accordingly. We assign signs to
the top/bottom edges as indicated in Figure 6 and assign +1 do all of the side edges.
This is clearly a cocycle, which respects the face pairings and thus gives rise to a cocycle
in ε ∈ Z1(∂M ; {±1}) as desired. We stress that ε depends on the decomposition of M ,
in particular the choice of a braid D representing K.

x3

x4

x1

x̃3
x5 x6

x7

x3

x5

y2

x2
x̃5

(a) crossing for R

y1

x̃4

x5

x4

x1

x2
x3 x2

x7

x̃2

x̃6

y2

x6
x6

(b) crossing for R−1

y1

x̃4

−1

1

1

−1

−1

−1

−1

1

1

−1

−1

−1

1

1

−1

−1

1

1

−1

−1

0

1

4

3 5

2

0

1

2

3

4

5

Figure 6: An ideal octahedron at a crossing

The cocycle ε is illustrated in 7, where µ and λbf denote the meridian and black-board
framed longitude of the knot K, respectively. In particular, ε induces the homomorphism
ε that maps µ to −1 and λbf to 1.

· · ·

µ

: 1
: −1

λbf

Figure 7: Configuration of ε on the boundary torus
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3.4. Proof of Theorem 1.4

Let us consider an octahedron of O. We index the vertices by {0, · · · , 5} and denote
the oriented edges as in Figure 6. Let us compute the equation (3) for each of the ideal
tetrahedra with obstruction cocycle σ := d(ε) ∈ Z2(M,∂M ; {±1}), where d is the map
in (4). For example, the tetrahedron with vertices {0, 3, 4, 5} in Figure 6(a) gives

σ4c(l04)c(l35) = σ5 c(l05)c(l34) + σ3c(l03)c(l45)⇔ (−1)x3x4 = x3x1 + (−1)x2y1,

which is equivalent to x2y1 = x3x4 + x1x3. Similar computations give:

{0, 3, 4, 5} : x2y1 = x3x4 + x1x3
{1, 2, 3, 5} : x6y2 = x5x7 + x4x5
{2, 3, 4, 5} : x4x̃4 = x1x7 + y1y2
{0, 2, 4, 5} : x̃5y1 = x3x̃4 + x3x7
{1, 2, 3, 4} : x̃3y2 = x5x̃4 + x1x5

for Figure 6(a) and
{0, 2, 4, 5} : y1x5 = x4x6 + x6x7
{1, 2, 3, 4} : x3y2 = x1x2 + x2x4
{2, 3, 4, 5} : x4x̃4 = y1y2 + x1x7
{0, 3, 4, 5} : x̃2y1 = x6x̃4 + x1x6
{1, 2, 3, 5} : x̃6y2 = x2x7 + x2x̃4

for Figure 6(b). Considering x1, · · · , x7 as given variables, we have

(y1, y2) =

(
x3(x1 + x4)

x2
,
x5(x4 + x7)

x6

)
(8)

(x̃3, x̃4, x̃5) =



x1x3x5 + x3x4x5 + x1x2x6
x2x4

x1x3x4x5 + x3x
2
4x5 + x1x3x5x7 + x3x4x5x7 + x1x2x6x7

x2x4x6
x3x4x5 + x3x5x7 + x2x6x7

x4x6



T

for Figure 6(a) and

(y1, y2) =

(
x6(x4 + x7)

x5
,
x2(x1 + x4)

x3

)
(9)

(x̃2, x̃4, x̃6) =



x1x3x5 + x1x2x6 + x2x4x6
x3x4

x1x2x4x6 + x2x
2
4x6 + x1x3x5x7 + x1x2x6x7 + x2x4x6x7

x3x4x5
x2x4x6 + x3x5x7 + x2x6x7

x4x5



T

for Figure 6(b).
Letting x̃1 = x1, x̃2 = x5, x̃6 = x3, x̃7 = x7 for Figure 6(a) and x̃1 = x1, x̃3 =

10



x6, x̃5 = x2, x̃7 = x7 for Figure 6(b), we obtain



x̃1

x̃2

x̃3

x̃4

x̃5

x̃6

x̃7



T

=



x1

x5

x1x3x5 + x3x4x5 + x1x2x6
x2x4

x1x3x4x5 + x3x
2
4x5 + x1x3x5x7 + x3x4x5x7 + x1x2x6x7

x2x4x6
x3x4x5 + x3x5x7 + x2x6x7

x4x6

x3

x7



T

= R



x1

x2

x3

x4

x5

x6

x7



T

(10)
for Figure 6(a) and



x̃1

x̃2

x̃3

x̃4

x̃5

x̃6

x̃7



T

=



x1

x1x3x5 + x1x2x6 + x2x4x6
x3x4

x6

x1x2x4x6 + x2x
2
4x6 + x1x3x5x7 + x1x2x6x7 + x2x4x6x7

x3x4x5

x2

x3x5x7 + x2x4x6 + x2x6x7
x4x5

x7



T

= R−1



x1

x2

x3

x4

x5

x6

x7



T

(11)
for Figure 6(b). The equations (10) and (11) exactly coincide with the definition of the
operators R± in [6]. See [6, Equation (2.17)].

Now let D be a braid of length n and width m. Let x1 be a solution and cx1 : O1 → C
be the induced set map. Recall that T has two additional edges per crossing compared
to O. We extend the set map to cx1 : T1 → C by defining the values on the added edges
using the equations (8) and (9).

We say that a solution x1 ∈ C3m+1 is non-trivial if cx1(e) 6= 0 for all e ∈ T1. The
previous computation in this section tells us that the set map cx1 induced from a non-
trivial solution x1 is a point of the Ptolemy variety Pσ(T) with obstruction cocycle σ(=
d(ε)) ∈ Z2(M,∂M ; {±1}). Therefore, a non-trivial solution x1 induces a (PSL(2,C), P )-
representation ρx1 whose obstruction class is σ ∈ H2(M,∂M ; {±1}).

Theorem 3.1. Let D be a braid of length n and width m representing a knot. Let x1 ∈
C3m+1 be a non-trivial solution. Then the obstruction class of the induced representation
ρx1 is (−1)n.

Proof. By Theorem 2.4 it suffices to show that ε(λ) = (−1)n for the canonical longitude λ
where ε is the homomorphism on the boundary torus induced from the cocycle ε. Recall
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Section 3.3 that we have ε(µ) = −1 and ε(λbf ) = 1 for the meridian µ and blackboard
framed longitude λbf . We thus have

ε(λ) = ε(λbf ) ε(µ)−w(D)

= ε(λbf ) ε(µ)−n = (−1)n.

Here w(D) denotes the writhe of the closure of D which is congruent to the length n in
modulo 2.

4. Explicit computation from a representation

Let D be a braid of length n representing a knot and M be the knot exterior. Let
ρ : π1(M) → PSL(2,C) be a (PSL(2,C), P )-representation which has a SL(2,C)-lifting
ρ̃ : π1(M)→ SL(2,C) such that

ρ̃(µ) =

(
−1 ∗
0 −1

)
6= −Id and ρ̃(λ) =

(
(−1)n ∗

0 (−1)n

)
up to conjugation. As we stated in Theorem 1.5, there exists c ∈ Pσ(T) such that
the induced representation ρc coincides with ρ up to conjugation. In this section, we
present an explicit way to compute such c ∈ Pσ(T) using the notions of arc-colorings
and region-colorings of a knot diagram (see e.g. [7, 8]).

Remark 4.1. The existence of such c follows from [4]. Namely, the Ptolemy variety
parametrizes generically decorated representations, so it is enough to prove the existence
of a generic decoration of ρ. Since the 5 simplex per crossing triangulation has the
property that no edge joins a torus boundary component to itself, and since decorations of
spherical boundary components can be chosen freely, a decoration with non-zero Ptolemy
coordinates always exists. We refer to [4] for details on decorations. The above (non-
constructive) existence argument was pointed out to the third author by Seonhwa Kim.

We index the regions of D by 1 ≤ j ≤ n + 2 and the arcs by 1 ≤ i ≤ n. We then
assign a 2-dimensional non-zero column vector, called a region-coloring Vj to the j-th
region so that these vectors satisfy

Vj2 = ρ̃(mi)
−1Vj1

for Figure 8 (left) where mi is the Wirtinger generator corresponding to the i-th arc. The
region-colorings are well-determined whenever an initial coloring is chosen arbitrarily.

We also assign a 2-dimensional non-zero column vector, called an arc-coloring, Hi to
the i-th arc so that these vectors satisfy ρ̃(mi)Hi = −Hi for 1 ≤ i ≤ m (recall that the
eigenvalue of ρ̃(mi) is −1) and

Hi3 = ρ̃(mi2)−1Hi1 (12)

for Figure 8 (right). We stress that the fact that the eigenvalue of ρ̃(λbf ) is 1 (equivalently,
the eigenvalue of ρ̃(λ) is (−1)n) is required to satisfy all the equations (12).

Recall that the octahedral decomposition O has 3n + 2 edges; (i) n of them, called
over-edges, stand above the knot; (ii) other n of them, called under-edges, stand below

12



Vj1

Vj2 = ρ̃(mi)
−1Vj1

i1

i2

i3

Hi3 = ρ̃(mi2)−1Hi1

i

Figure 8: Rules for region- and arc-colorings.

the knot; (iii) last n+2 of them, called regional edges, stand on the regions. See Figure 9.
We choose an additional non-zero column vector V0 arbitrarily and define the set map
c : O1 → C as follows.

(i) c(e) := det(Hi, V0) if e is the over-edge standing over the i-th arc;

(ii) c(e) := det(Vj , Hi) if e is the under-edge standing below the i-th arc whose left-side
region is indexed by j;

(iii) c(e) := det(Vj , V0) if e is the regional edge corresponding the j-th region.

Here we oriented the edge e as in Figure 9.

j

i
regional edge : det(Vj , V0)

over-edge : det(Hi, V0)

under-edge : det(Vj , Hi)

Figure 9: Edges of O with c-values.

We again extend the above set map to c : T1 → C by using the equations (8) and
(9). The argument of the proof of [2, Lemma 2.1] tells us that there exists V0 so that
c(e) 6= 0 for all e ∈ T1. For such V0 we obtain c ∈ Pσ(T) and the induced representation
ρc coincides with ρ that we started with up to conjugation. See [2, 13] for further details.

Example 4.2 (The 41 knot with a kink). Let us consider a braid of the 41 knot as in
Figure 10. The geometric representation ρ lifts to a SL(2,C)-representation ρ̃ such that

ρ̃(m1) = ρ̃(m2) =

(
−1 −1
0 −1

)
, ρ̃(m3) =

(
−1 0
−λ −1

)
ρ̃(m4) =

(
−1− λ λ
−λ −1 + λ

)
, ρ̃(m4) =

(
−2 λ
−1 + λ 0

)
where λ2 − λ+ 1 = 0. Note that ρ̃(λ) shall have trace −2.
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x2

x3

x4

x5

x6

x11 2 34

5

1 2

3

4

5

6

7

Figure 10: A braid presentation of the 41 knot.

Choosing the initial arc-coloring H1 =
(
1
0

)
, we have

H2 = ρ̃(m2)−1H1 =
(−1

0

)
, H3 = ρ̃(m5)−1H2 =

(
0

−1+λ

)
H4 = ρ̃(m2)H3 =

(
1−λ
1−λ
)
, H5 = ρ̃(m3)−1H4 =

(−1+λ
λ

)
.

Similarly, choosing the initial region-coloring V1 =
(
α
β

)
for some α, β ∈ C, we have

V2 = ρ̃(m1)−1V1 =
(−α+β

−β
)
, V3 = ρ̃(m2)−1V2 =

(
α−2β
β

)
V4 = ρ̃(m4)−1V2 =

(
α(1−λ)+β(−1+2λ)

−αλ+β(1+2λ)

)
, V5 = ρ̃(m3)−1V3 =

( −α+2β
αλ−β(1+2λ)

)
V6 = ρ̃(m5)−1V4 =

(
α(−1+λ)+β(2−3λ)

αλ−β(1+3λ)

)
, V7 = ρ̃(m5)−1V5 =

(
α(1−λ)+β(−2+3λ)
−α(1+λ)+2β(2+λ)

)
.

Then finally, letting V0 =
(
γ
1

)
for some γ ∈ C, we obtain : (here we abbreviate det(V,W )

by |V,W |)

x1 =



|V1, V0|
|V2, H1|
|H1, V0|
|V2, V0|
|V3, H2|
|H2, V0|
|V3, V0|
|V6, H4|
|H4, V0|
|V6, V0|
|V7, H3|
|H3, V0|
|V7, V0|



T

=



α− βγ
β
1

−α+ βγ + β
β
−1

α− β(γ + 2)
(λ− 1)(α− 3β)
(γ − 1)(λ− 1)

α(−γλ+ λ− 1) + β(3(γ − 1)λ+ γ + 2)
αλ− β(2λ+ 1)

γ − γλ
α((γ − 1)λ+ γ + 1)− β(2γ(λ+ 2)− 3λ+ 2)



T
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x2 =



|V1, V0|
|V2, H1|
|H1, V0|
|V2, V0|
|V3, H2|
|H2, V0|
|V3, V0|
|V5, H3|
|H3, V0|
|V5, V0|
|V7, H5|
|H5, V0|
|V7, V0|



T

=



α− βγ
β
1

−α+ βγ + β
β
−1

α− β(γ + 2)
λ2(−(α− 2β))

γ − γλ
β(2γλ+ γ + 2)− α(γλ+ 1)

(λ− 1)(α− 3β)
−γλ+ λ− 1

α((γ − 1)λ+ γ + 1)− β(2γ(λ+ 2)− 3λ+ 2)



T

x3 =



|V1, V0|
|V2, H1|
|H1, V0|
|V2, V0|
|V4, H4|
|H4, V0|
|V4, V0|
|V5, H2|
|H2, V0|
|V5, V0|
|V7, H5|
|H5, V0|
|V7, V0|



T

=



α− βγ
β
1

−α+ βγ + β
(λ− 1)(−(α− 2β))

(γ − 1)(λ− 1)
(γ − 1)λ(α− 2β) + α− β(γ + 1)

αλ− β(2λ+ 1)
−1

β(2γλ+ γ + 2)− α(γλ+ 1)
(λ− 1)(α− 3β)
−γλ+ λ− 1

α((γ − 1)λ+ γ + 1)− β(2γ(λ+ 2)− 3λ+ 2)



T

x4 =



|V1, V0|
|V2, H1|
|H1, V0|
|V2, V0|
|V4, H4|
|H4, V0|
|V4, V0|
|V6, H5|
|H5, V0|
|V6, V0|
|V7, H3|
|H3, V0|
|V7, V0|



T

=



α− βγ
β
1

−α+ βγ + β
(λ− 1)(−(α− 2β))

(γ − 1)(λ− 1)
(γ − 1)λ(α− 2β) + α− β(γ + 1)

−β
−γλ+ λ− 1

α(−γλ+ λ− 1) + β(3(γ − 1)λ+ γ + 2)
αλ− β(2λ+ 1)

γ − γλ
α((γ − 1)λ+ γ + 1)− β(2γ(λ+ 2)− 3λ+ 2)



T

15



x5 =



|V1, V0|
|V2, H1|
|H1, V0|
|V2, V0|
|V3, H1|
|H1, V0|
|V3, V0|
|V6, H4|
|H4, V0|
|V6, V0|
|V7, H3|
|H3, V0|
|V7, V0|



T

=



α− βγ
β
1

−α+ βγ + β
−β
1

α− β(γ + 2)
(λ− 1)(α− 3β)
(γ − 1)(λ− 1)

α(−γλ+ λ− 1) + β(3(γ − 1)λ+ γ + 2)
αλ− β(2λ+ 1)

γ − γλ
α((γ − 1)λ+ γ + 1)− β(2γ(λ+ 2)− 3λ+ 2)



T

x6 =



|V1, V0|
|V2, H1|
|H1, V0|
|V2, V0|
|V3, H2|
|H2, V0|
|V3, V0|
|V6, H4|
|H4, V0|
|V6, V0|
|V7, H3|
|H3, V0|
|V7, V0|



T

=



α− βγ
β
1

−α+ βγ + β
β
−1

α− β(γ + 2)
(λ− 1)(α− 3β)
(γ − 1)(λ− 1)

α(−γλ+ λ− 1) + β(3(γ − 1)λ+ γ + 2)
αλ− β(2λ+ 1)

γ − γλ
α((γ − 1)λ+ γ + 1)− β(2γ(λ+ 2)− 3λ+ 2)



T
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