Quasihomogeneous three-dimensional real analytic Lorentz metrics do not exist, with Sorin Dumitrescu pdf Geometriae Dedicata179 no. 1 (2015) 229-253
Essential Killing fields of parabolic geometries: projective
and conformal structures, with Andreas Čap pdfor in theESI
Preprint Series (number 2393) Central European Journal of Mathematics11 no. 12
(2013) 2053-2061
Formes normales pour les champs conformes pseudo-riemanniens [Normal forms for pseudo-Riemannian conformal vector fields], with Charles Frances dvipdfps Bulletin de la Société Mathématique de France141 no. 3 (2013), 377-421
A Frobenius theorem for Cartan geometries, with applications dvipdfps L'Enseignement Mathématique (Sér. II)57
no. 1-2 (2011) 57-89
Caution: There is an error, indicated to me by Vincent Pecastaing, in the proof of Theorem 6.3, the
Frobenius theorem for Killing fields around regular points in the
smooth case. I am working on fixing this proof; meanwhile, Pecastaing has an alternative
proof of this result for Killing fields in the smooth case, which can
be found at arxiv.org/abs/1402.5048. There are no known issues with
the real-analtyic results that constitute the bulk of my paper.
Conformal actions of nilpotent groups on pseudo-Riemannian
manifolds, with Charles Frances dvipdfps Duke Mathematical Journal153 no. 3 (2010) 511-550
Dynamics on Lorentz manifolds, lecture notes in English from the École de Géométrie Différentielle et Systèmes Dynamiques, ENSET Oran, Algeria, November 4-9, 2006 dvipdfps
French version, translated by D. Smai, in Algèbre, analyse, et dynamique pour la géométrie: Actes des Écoles de Géométrie et Dynamique au Maghreb 2004-2007 (eds. T. Barbot, H. Belbachir, S. Mehdi, D. Smai, R. Souam) Paris: Ellipses (2010) 307-342
An embedding theorem for automorphism groups of Cartan
geometries, with Uri Bader
and Charles Frances dvipdfps Geometric and Functional Analysis19 no. 2 (2009) 333-355
Compact Lorentz manifolds with local symmetry
University of Chicago dissertation, 2006 dvipdfps
article version
dvipdfps Journal of Differential Geometry81 no. 2 (2009) 355-390
A primer on the (2+1) Einstein universe, with Thierry Barbot,
Virginie Charette, Todd Drumm, and
William Goldman dvipdfps
in Recent developments in pseudo-Riemannian Geometry:
Proceedings of the Special Semester "Geometry of pseudo-Riemannian
manifolds with application to physics", Erwin Schrödinger Insitute,
Vienna, Sept - Dec 2005 (eds. D. Alekseevsky and H. Baum) in
ESI-Series on Mathematics and Physics
Actions of noncompact semisimple groups on Lorentz manifolds, with Mohamed Deffaf and Abdelghani Zeghib dvipdfps Geometric and Functional Analysis18 no. 2 (2008) 463-488
Isometric actions of Heisenberg groups on compact Lorentz manifolds dvipdfps Geometriae Dedicata126 no. 1 (2007) 131-154