Associate Professor, Statistics Program,
Department of Mathematics
University of Maryland, College Park
Additional affiliations
Applied Mathematics, Statistics, and Scientific Computation (AMSC) program
Research interests
Education
Gotta match 'em all: Solution diversification in graph matching matched filters
Z. Li, B. Johnson, D.L. Sussman, C.E. Priebe, V. Lyzinski
IEEE Transactions on Signal and Information Processing over Networks (accepted for publication 2024+)
Link, code implementing the modified MGMMF algorithm can be found here
Clustered Graph Matching for Label Recovery and Graph Classification
Z. Li, J. Arroyo, K.Pantazis, V. Lyzinski
IEEE Transactions on Network Science and Engineering, 10, no. 6:3384-3395 (2023)
Link
Subgraph nomination: Query by Example Subgraph Retrieval in Networks
A.-F. M. Al-Qadhi, C. E. Priebe, H. S. Helm, and V. Lyzinski
Statistics and Computing, 33, no. 2 (2023)
Link
Numerical Tolerance for Spectral Decompositions of Random Matrices and Applications to Network Inference
A. Athreya, Z. Lubberts, C. E. Priebe, Y. Park, M. Tang, V. Lyzinski, M. Kane, B. W. Lewis
Journal of Computational and Graphical Statistics, 32:1, 145-156,
(2023)
Link
Signed and Unsigned Partial Information Decompositions of Continuous Network Interactions
J. Milzman, V. Lyzinski
Journal of Complex Networks, Volume 10, Issue 5, October 2022, cnac026, https://doi.org/10.1093/comnet/cnac026 (2022)
Link
Multiplex graph matching matched filters
K. Pantazis, D. L. Sussman, Y. Park, Z. Li C. E. Priebe, V. Lyzinski
Applied Network Science, 7, Article number 29 (2022)
Link
The Importance of Being Correlated: Implications of Dependence in Joint Spectral Inference across Multiple Networks
K. Pantazis, A. Athreya, J. Arroyo, W. N. Frost, E. S. Hill, V. Lyzinski
Journal of Machine Learning Research, Vol. 23(141):1-77, (2022)
Link
Vertex nomination between graphs via spectral embedding and quadratic programming
R. Zheng, V. Lyzinski, C. E. Priebe, and M. Tang
Journal of Computational and Graphical Statistics, DOI: 10.1080/10618600.2022.2060238 (2022)
Link
The Phantom Alignment Strength Conjecture: Practical use of graph matching alignment strength to indicate a meaningful graph match (previous title was "On Phantom Alignment Strength")
D. E. Fishkind, F. Parker, H. Sawczuk, L. Meng, E. Bridgeford, A. Athreya, C. E. Priebe, and V. Lyzinski
Applied Network Science, 6, Article number: 62 (2021)
Link
Graph matching between bipartite and unipartite networks: to collapse, or not to collapse, that is the question
J. Arroyo, C. E. Priebe, V. Lyzinski
IEEE Transactions on Network Science and Engineering, 8.4 (2021): 3019-3033
Link, Code
On a complete and sufficient statistic for the correlated Bernoulli random graph model
D. E. Fishkind, A. Athreya, L. Meng, V. Lyzinski, C. E. Priebe
Electronic Journal of Statistics, (2021) 15.1: 2336-2359
Link
Maximum Likelihood Estimation
and Graph Matching in Errorfully Observed Networks
J. Arroyo, D. L. Sussman, C. E. Priebe, V. Lyzinski
Journal of Computational and Graphical Statistics, (2021), pp. 1-13,
doi 10.1080/10618600.2021.1872582
Link, Code
Vertex Nomination, Consistent Estimation, and Adversarial Modification
J. Agterberg, Y. Park, J. Larson, C. White, C. E. Priebe, V. Lyzinski
Electronic Journal of Statistics
(2020), vol. 14.2, pp. 3230-3267
Link
Vertex Nomination Via Seeded Graph Matching
H. G. Patsolic, Y. Park, V. Lyzinski , C. E. Priebe
Statistical Analysis and Data Mining (2020), vol. 13.3, pp. 229-244
Link
Vertex nomination: The canonical sampling and the extended spectral nomination schemes
J. Yoder, L. Chen, H. Pao, E. Bridgeford, K. Levin, D. E. Fishkind, C. E. Priebe, V. Lyzinski
Computational Statistics & Data Analysis (2020), vol. 145
Link
Matchability of heterogeneous networks pairs
V. Lyzinski , D. L. Sussman
Information and Inference: a Journal of the IMA 9.4 (2020): 749-783
Link
Matched filters for noisy induced subgraph detection
D. L. Sussman, Y. Park, C. E. Priebe, V. Lyzinski
IEEE Transcations on Pattern Analysis and Machine Intelligence vol. 42, no. 11, pp. 2887-2900, 1 Nov. 2020
Link
On Consistent Vertex Nomination Schemes
V. Lyzinski, K. Levin, C.E. Priebe
Journal of Machine Learning Research (2019), no. 69, pp. 1-39
Link
Neural Variational Entity Set Expansion for Automatically Populated Knowledge Graphs
P. Rastogi, A. Poliak, V. Lyzinski, B. Van Durme
Information Retrieval Journal (2019), 22.3-4, pp. 232-255
[abstract can be found. here]
On a 'Two-Truths' Phenomenon in Spectral Graph Clustering
C. E. Priebe, Y. Park, J. T. Vogelstein, J. M . Conroy, V. Lyzinski, M. Tang, A. Athreya, J. Cape, E. Bridgeford
Proceedings of the National Academy of Sciences (2019), 116.13, pp. 5995-6000
Link
Alignment strength and correlation for graphs
D. E. Fishkind, L. Meng, A. Sun, C. E. Priebe, V. Lyzinski
Pattern Recognition Letters (2019), 125, pp. 203--215
Link
Seeded Graph Matching
D. E. Fishkind, S. Adali, H. G. Patsolic, L. Meng, D. Singh, V. Lyzinski, C.E. Priebe
Pattern Recognition (2019), Vol. 87, pp. 203--215
Link
Statistical Inference on Random Dot Product Graphs: A Survey
A. Athreya, D.E. Fishkind, K. Levin, V. Lyzinski, Y. Park, Y. Qin, D.L. Sussman, M. Tang, J.T. Vogelstein, C.E. and Priebe
Journal of Machine Learning Research (2018), Vol. 18, pp. 1-92
Link
Information Recovery in Shuffled Graphs via Graph Matching
V. Lyzinski
IEEE Transactions on Information Theory (2018), 64(5), pp.3254-3273
Link
Scalable Out-of-Sample Extension of Graph Embeddings Using Deep Neural Networks
A. Jansen, G. Sell, V. Lyzinski
Pattern Recognition Letters (2017), Vol. 94(15), pp. 1-6
Link
Fast Embedding for JOFC Using the Raw Stress Criterion
V. Lyzinski, Y. Park, C. E. Priebe and Michael Trosset
Journal of Computational and Graphical Statistics (2017), 26(4), pp. 786-802
Link
A semiparametric two-sample hypothesis testing problem for random dot product graphs
M. Tang, A. Athreya, D. L. Sussman, V. Lyzinski and C. E. Priebe
Journal of Computational and Graphical Statistics (2017), 26(2), 344-354
Link
A nonparametric two-sample hypothesis testing problem for random dot product graphs
M. Tang, A. Athreya, D. L. Sussman, V. Lyzinski and C. E. Priebe
Bernoulli Journal (2017), Vol. 23 no. 3, 1599-1630
Link
Laplacian Eigenmaps from Sparse, Noisy Similarity Measurements
K. Levin and V. Lyzinski
IEEE Transactions on Signal Processing (2017), Vol. 65(8)
Link
Community Detection and Classification in Hierarchical Stochastic Blockmodels
V. Lyzinski, M. Tang, A. Athreya, Y. Park and C. E. Priebe
IEEE Transactions on Network Science and Engineering (2017), 4(1), pp.13-26
Link
Data, code and figures are presented in more detail here
Semi-External Memory Sparse Matrix Multiplication on Billion-node Graphs in a Multicore Architecture
D. Zheng, D. Mhembere, V. Lyzinski, J. Vogelstein, C. E. Priebe, and R. Burns
IEEE Transactions in Parallel and Distributed Systems (2017), Vol. 28(5), pp 1470-1483
Link
A limit theorem for scaled eigenvectors of random dot product graphs
A. Athreya, C. E. Priebe, M. Tang, V. Lyzinski, D. J. Marchette and D. L. Sussman
Sankhya A (2016), 78.1, pp 1-18
Link
A Joint Graph Inference Case Study: the C.elegans Chemical and Electrical Connectomes
L. Chen, J. T. Vogelstein, V. Lyzinski, C. E. Priebe
Worm (2016), 5(2)
Link
Graph Matching: Relax at Your Own Risk
V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe and G. Sapiro
IEEE Transactions on Pattern Analysis and Machine Intelligence (2016), 38(1), pp.60-73
Link
Strong Stationary Duality for Diffusion Processes
J. A. Fill and V. Lyzinski
Journal of Theoretical Probability (2016), Vol. 29(4), pp. 1298-1338
Link
On the Consistency of the Likelihood Maximization Vertex Nomination Scheme: Bridging the Gap Between Maximum Likelihood Estimation and Graph Matching
V. Lyzinski, K. Levin, D. E. Fishkind and C. E. Priebe
Journal of Machine Learning Research (2016), 17(179), pp.1-34
Link
Vertex Nomination Schemes for Membership Prediction
D. E. Fishkind, V. Lyzinski, H. Pao, L. Chen and C. E. Priebe
Annals of Applied Statistics (2015), 9.3 pp 1510-1532
Link
Logarithmic representability of integers as k-sums
A. Godbole, S. Gutekunst, V. Lyzinski and Y. Zhuang
Integers: The Electronic Journal of Combinatorial Number Theory (2015), vol. 15A: Proceedings of Integers 2013: The Erdős Centennial Conference
Link
Fast Approximate Quadratic Programming for Graph Matching
J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E. Fishkind, R. J. Vogelstein, C. E. Priebe
PLOS One (2015), 10(4): e0121002. doi:10.1371/journal.pone.0121002
Link
Spectral Clustering for Divide-and-Conquer Graph Matching
V. Lyzinski, D. Sussman, D. E. Fishkind, H. Pao, L. Chen, J. Vogelstein, Y. Park and C. E. Priebe
Parallel Computing (2015), doi:10.1016/j.parco.2015.03.004
Link
Perfect clustering for stochastic block model graphs via adjacency spectral embedding
V. Lyzinski, D. Sussman, M. Tang, A. Athreya and C. E. Priebe
Electronic Journal of Statistics (2014), 8, pp 2905-2922
Link
Hitting times and interlacing eigenvalues: a stochastic approach using intertwinings
J. A. Fill and V. Lyzinski
Journal of Theoretical Probability (2014), Vol. 27(3), pp. 954-981
Link
Seeded graph matching for correlated Erdos-Renyi graphs
V. Lyzinski, D. E. Fishkind and C. E. Priebe
Journal of Machine Learning Research (2014), 15, pp 3513-3540
Link
Sharp threshold asymptotics for the emergence of additive bases
A. Godbole, C. M. Lim, V. Lyzinski and N. Triantafillou
Integers: The Electronic Journal of Combinatorial Number Theory (2013), vol. 13
Link
Multiplex graph matching matched filters
K. Pantazis, D. L. Sussman, Y. Park, C. E. Priebe, V. Lyzinski
GTA3 3.0: The 3rd workshop on Graph Techniques for Adversarial Activity Analytics, in Conjunction with the 2019 IEEE Big Data Conference, Los Angeles, CA, Dec 9, 2019
Matched Filters for Noisy Induced Subgraph Detection
D. Sussman, V. Lyzinski, Y. Park, C. E. Priebe
GTA3 2018: Workshop on Graph Techniques for Adversarial Activity Analytics, in conjuction with 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, Feb 9, 2018
(won the best paper award at the workshop)
Link
Metrics for Evaluating Network Alignment
J. Douglas, B. Zimmerman, A. Kopylov, J. Xu, D. Sussman, V. Lyzinski
GTA3 2018: Workshop on Graph Techniques for Adversarial Activity Analytics, in conjuction with 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, Feb 9, 2018
Link
A Central Limit Theorem for an Omnibus Embedding of Multiple Random Dot Product Graphs
K. Levin, A. Avanti, M. Tang, V. Lyzinski, C. E. Priebe
2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 964-967. IEEE
Link
An Evaluation of Graph Clustering Methods for Unsupervised Term Discovery
V. Lyzinski, G. Sell, and A. Jansen
Proceedings of Interspeech (2015), Dresden, Germany
Link
Optimizing the Induced Correlation in Omnibus Joint Graph Embeddings
K. Pantazis, M. Trosset, W. N. Frost, C. E. Priebe, V. Lyzinski
arXiv 2409.17544 (2024)
Link
Code implementing experiments can be found
here
ACRONYM: Augmented degree corrected, Community Reticulated Organized Network Yielding Model
B. Leinwand, V. Lyzinski
arXiv 2404.07462 (2024)
Link
Detection of Model-based Planted Pseudo-cliques in Random Dot Product Graphs by the Adjacency Spectral Embedding and the Graph Encoder Embedding
T. Qi, V. Lyzinski
arXiv 2312.11054 (2023)
Link,
Code implementing experiments can be found here
Evaluating the effects of high-throughput structural neuroimaging predictors on whole-brain functional connectome outcomes via network-based vector-on-matrix regression
T. Lu, Y. Zhang, V. Lyzinski, C. Bi, P. Kochunov, E. Hong, S. Chen
arXiv 2310.18533 (2023)
Link, code implementing MOAT can be found here
On seeded subgraph-to-subgraph matching: The ssSGM Algorithm and matchability information theory
L. Meng, M. Lou, J. Lin, V. Lyzinski, D.E. Fishkind
arXiv 2306.04016 (2023)
Link
Adversarial contamination of networks in the setting of vertex nomination: a new trimming method
S. Peyman, M. Tang, V. Lyzinski
arXiv 2208.09710 (2022)
Link
Lost in the Shuffle: Testing Power in the Presence of Errorful Network Vertex Labels
A. Saxena, V. Lyzinski
arXiv 2208.08638 (2022)
Link, Code for replicating the experiments can be found here
Leveraging semantically similar queries for ranking via combining representations
H. S. Helm, M. Abdin, B. D. Pedigo, S. Mahajan, V. Lyzinski, Y. Park, A. Basu, C. M. White, W. Yang, and C. E. Priebe
arXiv 2106.12621 (2021)
Link
On the role of features in vertex nomination: Content and context together are better (sometimes)
K. Levin, C. E. Priebe, V. Lyzinski
arXiv 2005.02151 (2020)
Link
Tractable Graph Matching via Soft Seeding
F. Fang, D. L. Sussman, V. Lyzinski
arXiv 1807.09299 (2018)
Link
Semiparametric spectral modeling of the Drosophila connectome
C. E. Priebe, Y. Park, M. Tang, A. Athreya, V. Lyzinski, J. T. Vogelstein, Y. Qin, B. Cocanougher, K. Eichler, M. Zlatic, A. Cardona
arXiv 1705.03297 (2017)
Link
A central limit theorem for an omnibus embedding of random dot product graphs
K. Levin, A. Athreya, M. Tang, V. Lyzinski, C.E. Priebe
arXiv 1705.09355, (2017)
Link
Seeded Graph Matching Via Joint Optimization of Fidelity and Commensurability
H. Patsolic, S. Adali, J. Vogelstein, Y. Park, C. E. Priebe, G. Li, V. Lyzinski
arXiv 1401.3813 (2014, revision submitted 2019)
Link
iGraphMatch: Tools to find the correspondences between vertices in different graphs. This package implements our graph matching code base (and numerous other graph matching algorithms from the literature). Work and maintenance are funded (in part) by my DARPA MAA awards (award numbers FA8750-20-2-1001 and FA8750-18-0035). Earlier versions of our graph matching code can be found here, and in the igraph R package (the match_vertices function)
VN: Implements the algorithms from
Vertex Nomination Via Seeded Graph Matching
H. G. Patsolic, Y. Park, V. Lyzinski , C. E. Priebe
Statistical Analysis and Data Mining (2020), vol. 13.3, pp. 229-244
Code and worked out examples can be found here
Fast Embedding for JOFC Using the Raw Stress Criterion
(supplemental code also available at publisher's site here)
Semiparametric spectral modeling of the Drosophila connectome (preprint)
(code reproduces figures also found in our JMLR survey paper)
STAT689 (RIT):
High-Dimensional Statistics
Description:
An RIT dedicated to some of the modern developments in high dimensional statistical inference (following closely the textbook: High-Dimensional Statistics: A Non-asymptotic Viewpoint, by Martin Wainwright, Cambridge Univ. Press 2019)
Meetings: W 12:00pm - 12:50pm Mth 0201
STAT705:
Computational Statistics in R
Official description (a bit outdated!):
Modern methods of computational statistics and their application to both practical problems and research. S-Plus and SAS programming with emphasis on S-Plus. S-Plus objects and functions, and SAS procedures. Topics include data management and graphics, Monte Carlo and simulation, bootstrapping, numerical optimization in statistics, linear and generalized linear models, nonparametric regression, time series analysis.
(My blurb: Statistical research and application has changed dramatically because of cheap and powerful computational and graphical tools. This course presents modern methods of computational statistics and their application to both practical problems and research. The techniques covered in STAT 705, which include some numerical-analysis ideas arising particularly in Statistics, should be part of every statistician's toolbox.)
Lectures: TTh 11:00am - 12:15pm EGR 1102
Textbooks:
DATA607:
Communication in Data Science and Analytics
Description:
Expected learning outcomes include that, in the context of data science and analytics, students should be able to: summarize, report, organize prose, statistics, graphics, and presentations; explain uncertainty, sensitivity/robustness, limitations; describe model generation and representation; discuss interpretations and implications; communicate effectively to diverse audiences within a business organization, and possibly other outcomes.
Lectures: W 6:00pm - 8:45pm EGR 1108
(Must be in Graduate Programs in Science Academy. For permission to enroll, contact oes@umd.edu)
Textbooks: In addition to course handouts and online resources, readings for the course will be assigned from the following textbooks: